ย．ๆ．แฉзน้，แ．ч．ๆกากบรน้

UUDEUUStчU4UL कヶ2ヶ4U3ヶ なul？ đกワกบū̄กト

UUOtUUSh4U4UL đПへПЧUŌกト

U\＄ృwG U．ף．，Tnnnujwa U．Ч．

 tnhwih hwiwiu．，tn．，2001， 200 tq：

 （ pua 700 huanpnitin L hurlwumpnusaten：

 pawquयuntitnhg 4tingnud：
onñ

umpumintuctud t pnahtnh nıumannatph huoum：
$u \frac{1602070100}{704(02) 2001} 2001 \mathrm{p}$.
१Uף 22．161．6

ヒクマ Anwnunulu

$$
231095
$$

$$
\begin{equation*}
F\left(x_{1}, \cdots, x_{n}, u, u_{x_{1}}, \cdots, u_{x_{n}}, u_{x_{1} x_{1}}, \cdots, u_{x_{n} x_{n}}, \cdots\right)=0 \tag{1}
\end{equation*}
$$

npenten F-n hujunah \$ncalighus t:

$$
F\left(x_{1}, x_{2}, u, u_{x_{1}}, u_{x_{2}}\right)=0
$$

tnunnnn 4mpaplin

$$
F\left(x_{1}, x_{2}, u, u_{x_{1}}, u_{x_{2}}, u_{x_{1} x_{1}}, u_{x_{1} x_{2}}, u_{x_{2} x_{2}}\right)=0:
$$

$$
\begin{aligned}
& A\left(x_{1}, x_{2}, u, u_{x_{1}}, u_{x_{2}}\right) u_{x_{1} x_{1}}+B\left(x_{1}, x_{2}, u, u_{x_{1}}, u_{x_{2}}\right) u_{x_{1} x_{2}}+ \\
& \quad+C\left(x_{1}, x_{2}, u, u_{x_{1}}, u_{x_{2}}\right) u_{x_{2} x_{2}}=D\left(x_{1}, x_{2}, u, u_{x_{1}}, u_{x_{2}}\right):
\end{aligned}
$$

 Uusup: Onhamu.

$$
\begin{aligned}
A(x, y) u_{x x}+ & 2 B(x, y) u_{x y}+C(x, y) u_{y y}+ \\
& +D(x, y) u_{x}+E(x, y) u_{y}+F(x, y) u=G(x, y)
\end{aligned}
$$

 \$nıLǐghwjh Glumenuwup:

w. $\cos \left(u_{x}+u_{y}\right)-\cos u_{x} \cos u_{y}+\sin u_{x} \sin u_{y}=0:$
p. $u_{x x}^{2}+u_{y y}^{2}-\left(u_{x x}-u_{y y}\right)^{2}=0$:
q. $\sin ^{2}\left(u_{x x}+u_{x y}\right)+\cos ^{2}\left(u_{: r x}+u_{x y}\right)-u=1$:

ๆ. $\sin \left(u_{x y}+u_{x}\right)-\sin u_{x y} \cos u_{x}-\cos u_{x y} \sin u_{x}+2 u=0$:
t. $(\operatorname{tg} u)_{x}-u_{x} \sec ^{2} u-3 u+2=0$:
q. $\log \left|u_{x} u_{y}\right|-\log \left|u_{x}\right|-\log \left|u_{y}\right|+5 u-6=0$:
2. Tumatil hurluumpniufitinh पungn
w. $\log \left|u_{x x} u_{y y}\right|-\log \left|u_{x x}\right|-\log \left|u_{y y}\right|+u_{x}+u_{y}=0:$

ค. $u_{x} u_{x y}^{2}+\left(u_{x x}^{2}-2 u_{x y}^{2}+u_{y}\right)^{2}-2 x y=0$:
q. $\cos ^{2} u_{x y}+\sin ^{2} u_{x y}-2 u_{x}^{2}-3 u_{y}+u=0$:

ๆ. $2\left(u_{x}-2 u\right) u_{x y}-\left(\left(u_{x}-2 u\right)^{2}\right)_{y}-x y=0$:
t. $\left(u_{y y}^{2}-u_{y}\right)_{x}-2 u_{y y}\left(u_{x y}-u_{x}\right)_{y}-2 u_{x}+2=0$:
q. $2 u_{x x} u_{x x y}-\left(\left(u_{x x}-u_{y}\right)^{2}\right)_{y}-2 u_{y} u_{x x y}+u_{x}=0$:

แ. $u_{x} u_{x y}^{2}+2 x u u_{y y}-3 x y u_{y}-u=0$:
f. $u_{y} u_{x x}-3 x^{2} u u_{x y}+2 u_{x}-f(x, y) u=0$:
q. $2 \sin (x+y) u_{x x}-x \cos y u_{x y}+x y u_{x}-3 u+1=0$:

ก. $x^{2} y u_{x x y}+2 e^{x} y^{2} u_{x y}-\left(x^{2} y^{2}+1\right) u_{x x}-2 u=0$:
t. $3 u_{x y}-6 u_{x x}+7 u_{y}-u_{x}+8 x=0$:
q. $u_{x y} u_{x x}-3 u_{y y}-6 x u_{y}+x y u=0$:
t.. $a(x, y) u_{x x}+b(x, y) u_{x y}+c(x, y) u_{y y}+d(x, y) u_{x}+$ $+e(x, y) u_{y}+h(x, y)=0:$
п. $a\left(x, y, u_{x}, u_{x y}\right) u_{x y y}+b\left(x, y, u_{y y}\right) u_{y y y}+2 u u_{x y}^{2}-f(x, y)=0$:
p. $u_{x y}+u_{y}+u^{2}-x y=0$:
б. $u_{x y}+2\left(u_{x}^{2}+u\right)_{x}-6 x \sin y=0$:
h. $2 x u_{x y}-6\left(u^{2}-x y\right)_{x}+u_{y y}=0$:

เ. $\left(y u_{y}+u_{x}^{2}\right)_{y}-2 u_{x} u_{x y}+u_{x}-6 u=0$:

9 L तr fu I
 tч 4Ul Luluul stuer fernruc

 4n2hh fuanhn

$$
\begin{equation*}
a_{1} \frac{\partial z}{\partial x_{1}}+\cdots+a_{n} \frac{\partial z}{\partial x_{n}}=b \tag{1}
\end{equation*}
$$

 olunt: গhgnıe haumuunn t qunctit

$$
\frac{d x_{1}}{a_{1}}=\cdots=\frac{d x_{n}}{a_{n}}=\frac{d z}{b}
$$

 ntaf wilumu

$$
\begin{equation*}
\varphi_{1}\left(x_{1}, \cdots, x_{n}, z\right)=C_{1}, \cdots, \varphi_{n}\left(x_{1}, \cdots, x_{n}, z\right)=C_{n} \tag{2}
\end{equation*}
$$

 unnug4nus ta

$$
F\left(\varphi_{1}, \cdots, \varphi_{n}\right)=0
$$

$$
\begin{equation*}
\varphi_{n}\left(x_{1}, \cdots, x_{n}, z\right)=f\left(\varphi_{1}, \cdots, \varphi_{n-1}\right) \tag{3}
\end{equation*}
$$

nnuntin f -
2. Uwulimuh wơmagjuciatnny nh\$tntaghui huqumumpnculatinh hwsum witawlumplann fuanhnatighg stilu 4n2hh fuGinhnat

$$
\begin{equation*}
a_{1}(x, y, z) \frac{\partial z}{\partial x}+a_{2}(x, y, z) \frac{\partial z}{\partial y}=b(x, y, z) \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
x=u(t), \quad y=v(t), \quad z=w(t) \tag{5}
\end{equation*}
$$

цnnnu: U4qpnus quntinus tup

$$
\frac{d x}{a_{1}}=\frac{d y}{a_{2}}=\frac{d z}{b}
$$

$$
\begin{equation*}
\varphi_{1}(x, y, z)=C_{1} ; \quad \varphi_{2}(x, y, z)=C_{2} \tag{6}
\end{equation*}
$$

$$
\Psi_{1}(t)=C_{1}, \quad \Psi_{2}(t)=C_{2}:
$$

 npnlitith inconcun:
 nh htinlujul humblynipjniang thts

$$
\frac{a_{1}}{b_{1}}=\frac{a_{1}}{b_{2}}=\cdots=\frac{a_{n}}{b_{n}}=t
$$

$$
\frac{k_{1} a_{1}+k_{2} a_{2}+\cdots+k_{n} a_{n}}{k_{1} b_{1}+k_{2} b_{2}+\cdots+k_{n} b_{n}}=t
$$

แ. $y z_{x}-x z_{y}=0$:
ค. $(x+2 y) z_{x}-y z_{y}=0$:
q. $x u_{x}+y u_{y}+z u_{z}=0$:

ๆ. $(x-z) u_{x}+(y-z) u_{y}+2 z u_{z}=0$:
t. $y z_{x}+x z_{y}=x-y$:
q. $e^{x} z_{x}+y^{2} z_{y}=y e^{x}$:
t. $2 x z_{x}+(y-x) z_{y}=x^{2}$:
․ $x y z_{x}-x^{2} z_{y}=y z$:
ค. $x z_{x}+2 y z_{y}=x^{2} y+z$:
d. $\left(x^{2}+y^{2}\right) z_{x}+2 x y z_{y}+z^{2}=0$:
h. $2 y^{4} z_{x}-x y z_{y}=x \sqrt{z^{2}+1}$:

เ. $x^{2} z z_{x}+y^{2} z z_{y}=x+y$:
ł. $y z z_{x}-x z z_{y}=e^{z}$:
0. $(z-y)^{2} z_{x}+x z z_{y}=x y$:
4. $x y z_{x}+(x-2 z) z_{y}=y z$:
h. $y z_{x}+z z_{y}=\frac{y}{x}$:
d. $\sin ^{2} x z_{x}+\operatorname{tg} z z_{y}=\cos ^{2} z:$

ก. $(x+z) z_{x}+(y+z) z_{y}=x+y$:
ช. $(x z+y) z_{x}+(x+y z) z_{y}=1-z^{2}$:

ง. $(y+z) u_{x}+(z+x) u_{y}+(x+y) u_{z}=u:$
ر. $x u_{x}+y u_{y}+(z+u) u_{z}=x y$:
G. $(u-x) u_{x}+(u-y) u_{y}-z u_{z}=x+y$:

แ. $x z_{x}-y z_{y}=0, z(x, 1)=2 x:$
ค. $z_{x}+\left(2 e^{x}-y\right) z_{y}=0, z(0, y)=y$:
q. $2 \sqrt{x} z_{x}-y z_{y}=0, z(1, y)=y^{2}$:

ๆ. $u_{x}+u_{y}+2 u_{z}=0, u(1, y, z)=y z:$
t. $x u_{x}+y u_{y}+x y u_{z}=0, u(x, y, 0)=x^{2}+y^{2}$:

แ. $y^{2} z_{x}+x y z_{y}=x, x=0, z=y^{2}$:
ค. $x z_{x}-2 y z_{y}=x^{2}+y^{2}, y=1, z=x^{2}$:
9. $x z_{x}+y z_{y}=z-x y, x=2, z=y^{2}+1$:

ๆ. $\operatorname{tg} x z_{x}+y z_{y}=z, \quad y=x, z=x^{3}$:
t. $x z_{x}-y z_{y}=z^{2}(x-3 y), x=1, y z+1=0$:
q. $x z_{x}+y z_{y}=z-x^{2}-y^{2}, y=-2, z=x-x^{2}$:
t. $y z z_{x}+x z z_{y}=x y, x=a, y^{2}+z^{2}=a^{2}$:
‥ $z z_{x}-x y z_{y}=2 z x, x+y=2, y z=1$:
ค. $z z_{x}+\left(z^{2}-x^{2}\right) z_{y}=-x, y=x^{2}, z=2 x$:
d. $(y-z) z_{x}+(z-x) z_{y}=x-y, z=y=-x$:

ค. $x z_{x}+(x z+y) z_{y}=z, x+y=z, x z=1$:
เ. $y^{2} z_{x}+y z z_{y}=-z^{2}, x-y=0, x-y z=1$:
|u. $x z_{x}+z z_{y}=y, y=2 z, x+2 y=z$:
б. $\left(y+2 z^{2}\right) z_{x}-2 x^{2} z z_{y}=x^{2}, x=z, y=x^{2}$:
4. $(x-z) z_{x}+(y-z) z_{y}=2 z, x-y=2, z 2 x=1$:
h. $x y^{3} z_{x}+x^{2} z^{2} z_{y}=y^{3} z, x-z^{3}, y=z^{2}$:

 intupn

$$
\begin{align*}
& \sum_{i, j=1}^{n} a_{i j}\left(x_{1}, x_{2}, \ldots, x_{n}\right) u_{x_{i} x_{j}}+ \tag{1}\\
& +
\end{align*}
$$

$$
\begin{equation*}
Q\left(t_{1}, t_{2}, \ldots, t_{n}\right)=\sum_{i, j=1}^{n} a_{i j}\left(x_{1}^{0}, \ldots, x_{n}^{0}\right) t_{i} t_{j}: \tag{2}
\end{equation*}
$$

$$
t_{i}=\sum_{k=1}^{n} h_{i k} \tau_{k}, i=1,2, \ldots, n
$$

 ptolh

$$
\begin{equation*}
Q=\sum_{i=1}^{n} \alpha_{i} \tau_{i}^{2} \tag{3}
\end{equation*}
$$

 qnnt:

แ. $u_{x x}-2 u_{x y}+3 u_{y y}+u_{x}-u_{y}+3 u-x y^{2}=0$:
ค. $u_{x x}+2 u_{x y}-3 u_{y y}-u_{x}+u_{y}-2 u-x^{2} y=0$:
q. $u_{x x}-2 u_{x y}+u_{y y}+2 u_{x}-u=0$:

ก. $u_{x x}+2 u_{y y}+3 u_{z z}-2 u_{x y}+2 u_{x z}-4 u_{y z}+3 u=0$:
t. $u_{x y}+u_{x z}-u_{y z}+2 u_{x}-3 u=0$:
q. $u_{x x}+2 u_{y y}+u_{z z}-2 u_{x y}+2 u_{y z}-u_{x}+2 u_{y}-u=0$:
t. $u_{x x}+2 u_{y y}+u_{z z}-4 u_{x y}+2 u_{y z}-x y e^{z}=0$:
‥ $u_{x x}-4 u_{x y}+2 u_{x z}+4 u_{y y}+u_{z z}-2 x y u_{x}+3 x u=0$:
ค. $u_{x x}+2 u_{x y}+2 u_{y y}-2 u_{y z}+u_{z z}-u+x z^{2} \cos y=0$:
d. $5 u_{x x}+u_{y y}+5 u_{z z}+4 u_{x y}-8 u_{x z}-4 u_{y z}-u+y z \sin y=0$:
h. $y^{3} u_{x x}+u_{y y}-u_{x}=0$:

เ. $x u_{x x}+y u_{y y}-u=0$:
fu. $(l+x) u_{x x}+2 x y u_{x y}-y^{2} u_{y y}=0$:
б. $u_{x x}+x u_{y y}=0$:
4. $u_{x x}+x y u_{y y}=0$:
h. $u_{x x} \operatorname{sign} y+2 u_{x y}+u_{y y}=0$:
d. $u_{x x}+2 u_{x y}+(1-\operatorname{sign} y) u_{y y}=0$:

ๆ. $u_{x x} \operatorname{sign} y+2 u_{x y}+u_{y y} \operatorname{sign} x=0$:
б. $x^{2} u_{x x}-y^{2} u_{y y}=0$:

ง. $y^{2} u_{x x}+2 x y u_{x y}+x^{2} u_{y y}=0$:

$$
\begin{equation*}
A u_{x x}+2 B u_{x y}+C u_{y y}+F\left(x, y, u, u_{x}, u_{y}\right)=0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
Q\left(t_{1}, t_{2}\right)=A t_{1}^{2}+2 B t_{1} t_{2}+C t_{2}^{2} \tag{2}
\end{equation*}
$$

 $(\Delta>0)$ чшл $(\Delta=0)$:

Thinumlticip

$$
\begin{equation*}
A(d y)^{2}-2 B d y d x+C(d x)^{2}=0 \tag{3}
\end{equation*}
$$

 $\frac{d y}{d x}$-h alquinúmúp), unneintú taip

$$
\begin{equation*}
\frac{d y}{d x}=\frac{B+i \sqrt{-\Delta}}{A} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\xi=\varphi(x, y), \quad \eta=\psi(x, y) \tag{5}
\end{equation*}
$$

ч

$$
\frac{\partial(\varphi, \psi)}{\partial(x, y)}=\varphi_{x} \psi_{y}-\varphi_{y} \psi_{x} \neq 0
$$

$$
\begin{equation*}
v_{\xi \xi}+v_{\eta \eta}+G\left(\xi, \eta, v, v_{\xi}, v_{\eta}\right)=0 \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d y}{d x}=\frac{B \pm \sqrt{\Delta}}{A} \tag{7}
\end{equation*}
$$

 umpniún ftpnnư t

$$
\begin{equation*}
v_{\xi \eta}+H\left(\xi, \eta, v, v_{\xi}, v_{\eta}\right)=0 \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
w_{\alpha \alpha}-w_{\beta \beta}+N\left(\alpha, \beta, w, w_{\alpha}, w_{\beta}\right)=0 \tag{9}
\end{equation*}
$$

 nnıún neatániut uth wnoume

$$
\begin{equation*}
\frac{d y}{d x}=\frac{B}{A} \tag{10}
\end{equation*}
$$

 ๆtupnnus lptnilh

$$
\begin{equation*}
v_{\eta \eta}+P\left(\xi, \eta, v, v_{\xi}, v_{\eta}\right)=0 \tag{11}
\end{equation*}
$$

Ymanamuma untuph:

$$
v=e^{\lambda \xi+\mu \eta} w
$$

 unweha lumah nplt ûh wowagjuing:

 w. $\left(1+x^{2}\right)^{2} u_{x x}+u_{y y}+2 x\left(1+x^{2}\right) u_{x}=0$:
f. $y^{2} u_{x x}+2 x y u_{x y}+x^{2} u_{y y}=0$:
9. $u_{x x}-\left(1+y^{2}\right)^{2} u_{y y}-2 y\left(1+y^{2}\right) u_{y}=0$:

ก. $\left(1+x^{2}\right) u_{x x}+\left(1+y^{2}\right) u_{y y}+x u_{x}+y u_{y}-2 u=0$:
t. $x^{2} u_{x x}+2 x y u_{x y}+y^{2} u_{y y}-2 y u_{x}+y e^{\frac{y}{x}}=0$:
q. $x y^{2} u_{x x}-2 x^{2} y u_{x y}+x^{3} u_{y y}-y^{2} u_{x}=0$:
t. $u_{x x}-2 \sin x u_{x y}-\cos ^{2} x u_{y y}-\cos x u_{y}=0$:
n. $e^{2 x} u_{x x}+2 e^{x+y} u_{x y}+e^{2 y} u_{y y}-x u=0$:
p. $u_{x x}-2 x u_{x y}=0$:
d. $x u_{x x}+2 x u_{x y}+(x-1) u_{y y}=0$:
h. $y u_{x x}+u_{y y}=0$:

เ. $u_{x x}+x y u_{y y}=0$:
ł. $9 u_{x x}-6 u_{x y}+u_{y y}+10 u_{x}-15 u_{y}-50 u+x-2 y=0$:
ð. $u_{x x}-2 u_{x y}+u_{y y}+9 u_{x}+9 u_{y}-9 u=0$:
 husumumpnsuatpp
u. $u_{x x}-4 u_{x y}+5 u_{y y}-3 u_{x}+u_{y}+u=0$:

ค. $u_{x x}-6 u_{x y}+9 u_{y y}-u_{x}+2 u_{y}=0$:
q. $2 u_{x y}-4 u_{y y}+u_{x}-2 u_{y}+u+x=0$:

ๆ. $u_{x y}+2 u_{y y}-u_{x}+4 u_{y}+u=0$:
t. $2 u_{x x}+2 u_{x y}+u_{y y}+4 u_{x}+4 u_{y}+u=0$:
q. $u_{x x}+2 u_{x y}+u_{y y}+3 u_{x}-5 u_{y}+4 u=0$:
t. $u_{x x}-u_{y y}+u_{x}+u_{y}-4 u=0$:
‥ $u_{x y}+u_{x x}-u_{y}-10 u+4 x=0$:
ค. $3 u_{x x}+u_{x y}+3 u_{x}+u_{y}-u+y=0$:
d. $u_{x x}+4 u_{x y}+5 u_{y y}-2 u_{x}-2 u_{y}+u 〒 0$:
h. $5 u_{x x}+16 u_{x y}+16 u_{y y}+24 u_{x}+32 u_{y}+64 u=0$:

เ. $u_{x x}-2 u_{x y}+u_{y y}-3 u_{x}+12 u_{y}+27 u=0$:
f. $u_{x x}-4 u_{x y}+4 u_{y y}+3 u_{x}=0$:
d. $u_{x x}-4 u_{x y}+3 u_{y y}+u_{x}-2 u_{y}+u=0$:

10. Ftinta quanamiqua intuph

u. $u_{x x}+2 u_{x y}+2 u_{y y}+4 u_{y z}+5 u_{z z}=0$:
.ค. $u_{x x}+4 u_{x y}+4 u_{y y}+9 u_{z z}+6 u_{x z}+12 u_{y z}-2 \dot{u_{x}}-$ $-4 u_{y}-6 u_{z}=0:$
9. $u_{x x}+4 u_{x y}+4 u_{y y}+4 u_{y z}+u_{z z}+2 u_{x z}+2 u=0$:

ก. 女 \& $u_{y y}-2 u_{x y}-2 u_{y z}+4 u=0$:
t. $u_{x y}+u_{x z}+u_{y z}-u_{x}+u_{y}=0$:
q. $u_{x x}-4 u_{x y}+2 u_{x z}+4 u_{y y}+u_{z z}+3 u_{x}=0:$
t. $u_{x x}+2 u_{y y}+u_{z z}-4 u_{x y}=0$:
n. $u_{x x}+2 u_{x y}+2 u_{y y}-2 u_{y z}+u_{z z}=0$:

ค. $5 u_{x x}+4 u_{x y}+u_{y y}-4 u_{y z}+5 u_{z z}-8 u_{x z}=0$:

9 L กr tu II

$$
\begin{equation*}
\rho \frac{\partial^{2} u}{\partial t^{2}}=\operatorname{div}(p \operatorname{grad} u)-q u+F(x, t) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\rho \frac{\partial^{2} u}{\partial t^{2}}=T \frac{\partial^{2} u}{\partial x^{2}} u+F \tag{2}
\end{equation*}
$$

 $\rho=$ const, шщш

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=a^{2} \frac{\partial^{2} u}{\partial x^{2}}+f, f=\frac{F}{\rho}, a^{2}=\frac{T}{\rho} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\rho S \frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial}{\partial x}\left(E S \frac{\partial u}{\partial x}\right)+F(x, t), \tag{4}
\end{equation*}
$$

 unnnuln:

$$
\begin{equation*}
\rho \frac{\partial^{2} u}{\partial t^{2}}=T\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)+F \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=a^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right)+F \tag{6}
\end{equation*}
$$

 பயujnniu:

$$
\begin{gathered}
\operatorname{div}(\varepsilon \mathbf{E})=4 \pi \rho, \operatorname{div}(\mu \mathbf{H})=0, \\
\operatorname{rot} \mathbf{E}=-\frac{1}{c} \frac{\partial}{\partial t}(\mu \mathbf{H}), \\
\operatorname{rot} \mathbf{H}=\frac{1}{c} \frac{\partial}{\partial t}(\varepsilon \mathbf{E})+\frac{4 \pi}{c} \mathbf{I},
\end{gathered}
$$

$$
\left(\frac{\partial^{2}}{\partial t^{2}}-\Delta+m_{0}^{2}\right) \varphi=0
$$

 inчையulatr.

Shahlumh nnlat fuanhn suptómenhunnta dhulitnutınt husimn wahnuadtian t

 \$nıGughma,

Lnıotts htinlumi fuainhncitinn

 pnus. thf

 tía x wnuagpnu nın

 шрияпп

 Gntưatinh fuanhnn:

 JuL η пtuptnn

 ta: 2nntinh

f. Lwnh owjnting wquin tici pnnculwó,

 0 üшhha:

 Yuod ta:
 భn¢

 tanujha fuanhnn $t>0$ üwhha: ?pununltal
u. wquin pnņǔud,
p. பnzun mínugumó,

owjntnh пtuщptnn:

 nıon: ?punumlita htinlumu ntuptinn

F. punmaiph tann wquint pnñulud,

nıon,

 jnif t gnıjg unuihu:

§2. Eqnujhci 4 4n2hh fuanhncitp

 वlumemanunis tía

$$
\begin{equation*}
\sum_{i=1}^{n} u_{x_{i} x_{i}}-u_{t t}=0 \tag{1}
\end{equation*}
$$

 hul hapn hw山wumnnıúg wLhpujha.
 jha dua nuth

$$
Q(\lambda)=\sum_{i=1}^{n} \lambda_{i}^{2}-\lambda_{n+1}^{2}
$$

$$
\begin{equation*}
u(x, 0)=\varphi(x) . \quad u_{t}(x, 0)=\psi(x) \tag{2}
\end{equation*}
$$

 чппипиumimalitnhg:

$$
\begin{gather*}
u_{t t}=a^{2} u_{x x}+f(x, t), \quad t>0, \quad-\infty<x<\infty \tag{3}\\
u(x, 0)=\varphi(x), \quad u_{t}(x, 0)=\psi(x), \quad-\infty<x<\infty:
\end{gather*}
$$

$$
\begin{equation*}
u(x, t)=\frac{\varphi(x-a t)+\varphi(x+a t)}{2}+\frac{1}{2 a} \int_{x-a t}^{x+a t} \psi(z) d z \tag{4}
\end{equation*}
$$

$$
\begin{gather*}
v_{t t}=a^{2} v_{x x}, \quad t>0, \quad-\infty<x<\infty \\
v(x, \tau, \tau)=0, \quad v_{t}(x, \tau, \tau)=f(x, \tau), \quad-\infty<x<\infty \tag{5}
\end{gather*}
$$

$$
\begin{equation*}
u(x, t)=\int_{0}^{t} v(x, t, \tau) d \tau \tag{6}
\end{equation*}
$$

\$nıágh

$$
\begin{aligned}
& u\left(x_{1}, x_{2}, t\right)=\frac{1}{2 \pi} \int_{K_{t}} \frac{\psi\left(y_{1}, y_{2}\right) d y_{1} d y_{2}}{\sqrt{t^{2}-\left(y_{1}-x_{1}\right)^{2}-\left(y_{2}-x_{2}\right)^{2}}}+ \\
&+\frac{1}{2 \pi} \frac{\partial}{\partial t} \int_{K_{t}} \frac{\varphi\left(y_{1}, y_{2}\right) d y_{1} d y_{2}}{\sqrt{t^{2}-\left(y_{1}-x_{1}\right)^{2}-\left(y_{2}-x_{2}\right)^{2}}}
\end{aligned}
$$

nnuntin $K_{t}-\mathrm{a}\left(y_{1}-x_{1}\right)^{2}+\left(y_{2}-x_{2}\right)^{2} \leq t^{2}$ 2nquad t :

$$
\begin{aligned}
u\left(x_{1}, x_{2}, x_{3}, t\right)=\frac{1}{4 \pi} & \int_{S_{t}} \frac{\psi\left(y_{1}, y_{2}, y_{3}\right)}{t} d \sigma+ \\
& +\frac{1}{4 \pi} \frac{\partial}{\partial t} \int_{S_{t}} \frac{\varphi\left(y_{1}, y_{2}, y_{3}\right)}{t} d \sigma
\end{aligned}
$$

nnuntin $S_{t}-\square\left(y_{1}-x_{1}\right)^{2}+\left(y_{2}-x_{2}\right)^{2}+\left(y_{3}-x_{3}\right)^{2}=t^{2}$ ustpmait :

23. Lntott 4n2hin fuanthniting

ш. $u_{x x} \overline{+} 2 u_{x y}-3 u_{y y}=0, u(x, 0)=3 x^{2}, u_{y}(x, 0)=0$:
f. $u_{x x}-u_{y y}+5 u_{x}+3 u_{y}+4 u=0$,

$$
u(x, 0)=x e^{-\frac{5}{2} x-x^{2}}, u_{y}(x, 0)=e^{-\frac{5}{2} x}
$$

q. $u_{x x}-6 u_{x y}+5 u_{y y}=0, u(x, x)=\sin x, u_{y}(x, x)=\cos x$:

ๆ. $u_{x x}-2 \cos x u_{x y}-\sin ^{2} x u_{y y}+u_{x}+(1+\cos x-\sin x) u_{y}=0$. $u(x, \sin x)=\cos x, u_{y}(x, \sin x)=\sin x:$
t. $4 y^{2} u_{x x}+2\left(1-y^{2}\right) u_{x y}-u_{y y}-\frac{2 y}{1+y^{2}}\left(2 u_{x}-u_{y}\right)=0$, $u(x, 0)=x^{2}, u_{y}(x, 0)=x \sin x:$
q. $u_{x x}-2 u_{x y}+4 e^{y}=0, u(0, y)=2 y e^{y}, u_{x}(0, y)=2 e^{y}:$
t. $u_{x x}+2 \cos x u_{x y}-\sin ^{2} x u_{y y}-\sin x u_{y}=0$,
$u(x, \sin x)=x+\cos x, u_{y}(x, \sin x)=\sin x:$
п. $u_{x x}+2 \sin x u_{x y}-\cos ^{2} x u_{y y}+u_{x}+(\sin x+\cos x+1) u_{y}=0$, $u(x,-\cos x)=1+2 \sin x, u_{y}(x,-\cos x)=\sin x:$
ค. $3 u_{x x}-4 u_{x y}+u_{y y}-3 u_{x}+u_{y}=0$,
$u(x, 0)=x+x e^{-\frac{x}{2}}, u_{y}(x, 0)=e^{-\frac{x}{2}}:$
d. $u_{x x}-2 \cos x u_{x y}-\left(3+\sin ^{2} x\right) u_{y y}+u_{x}+(\sin x-\cos x-2) u_{y}=0$, $u(x,-\sin x)=0, u_{y}(x,-\sin x)=e^{-\frac{x}{2}} \sin x:$
h. $e^{-2 x} u_{x x}-e^{-2 y} u_{y y}-e^{-2 x} u_{x}+e^{-2 y} u_{y}+8 e^{y}=0$, $u(x, 0)=1-e^{2 x}, u_{y}(x, 0)=3:$
L. $e^{y} u_{x y}-u_{y y}+u_{y}=0, u(x, 0)=-\frac{x^{2}}{2}, u_{y}(x, 0)=-\sin x:$
fu. $u_{x x}-2 \sin x u_{x y}-\left(3+\cos ^{2} x\right) u_{y y}-\cos x u_{y}=0$, $u(x, \cos x)=\sin x, u_{y}(x, \cos x)=e^{\frac{x}{2}}:$
б. $2 u_{x x}-5 u_{x y}+3 u_{y y}=0, u(x, 0)=0, u_{y}(x, 0)=-e^{3 x}$:
4. $2 u_{x x}+6 u_{x y}+4 u_{y y}+u_{x}+u_{y}=0$, $u(0, y)=0, u_{x}(0, y)=-e^{-\frac{y}{2}}:$
24. 3nıjg иnum, nn

$$
\begin{align*}
& u(x, t)=\sum_{k=0}^{\infty}\left(\frac{t^{2 k}}{(2 k)!} \Delta^{k} \mu\left(x_{1}, \cdots, x_{n}\right)+\right. \tag{7}\\
& \\
& \left.\quad+\frac{t^{2 k+1}}{(2 k+1)!} \Delta^{k} \nu\left(x_{1}, \cdots, x_{n}\right)\right)
\end{align*}
$$

\$nıalighwa huanh

 fumquariting:
25. Oqunपtinu (7) pwamaling [niotil 4n2hh fuanhniting (1) husuluumnumis husump, tpt

แ. $u(x, 0)=x_{1}^{3} x_{2}^{2}, u_{t}(x, 0)=x_{1}^{2} x_{2}^{4}-3 x_{1}^{3}$:
ค. $u(x, 0)=x_{1} x_{2} x_{3}, u_{t}(x, 0)=x_{1}^{2} x_{2}^{2} x_{3}^{2}$:
q. $u(x, 0)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}, u_{t}(x, 0)=x_{1} x_{2}$:

ๆ. $u(x, 0)=e^{x_{1}} \cos x_{2}, u_{t}(x, 0)=x_{1}^{2}-x_{2}^{2}$:
t. $u(x, 0)=x_{1}^{2}+x_{2}^{2}, u_{t}(x, 0)=1$:
q. $u(x, 0)=e^{x_{1}}, u_{t}(x, 0)=e^{-x_{1}}$:
t. $u(x, 0)=\frac{1}{x_{1}}, u_{t}(x, 0)=0, x_{1} \neq 0, x_{1}^{2} \neq t^{2}:$

$$
\begin{align*}
& u(x, t, \tau)=\sum_{k=0}^{\infty}\left(\frac{(t-\tau)^{2 k}}{(2 k)!} \Delta^{k} \mu\left(x_{1}, \cdots, x_{n}, \tau\right)+\right. \tag{8}\\
& \left.\quad+\frac{(t-\tau)^{2 k+1}}{(2 k+1)!} \Delta^{k} \nu\left(x_{1}, \cdots, x_{n}, \tau\right)\right)
\end{align*}
$$

 Ginut t

$$
\begin{gathered}
u_{t t}=\Delta u \\
u(x, \tau, \tau)=\mu(x, \tau), u_{t}(x, \tau, \tau)=\nu(x, \tau)
\end{gathered}
$$

 mơuagtl:

ш. $u_{t t}=\Delta u+a x+b t, u(x, y, z, 0)=x y z, u_{t}(x, y, z, 0)=x y+z:$

ค. $u_{t t}=\Delta u+\frac{x}{1+t^{2}} e^{y} \cos z$,

$$
u(x, y, z, 0)=z \sin (\sqrt{2}(x+y)), u_{t}(x, y, z, 0)=0:
$$

9. $u_{t t}=\Delta u+\frac{x t}{1+t^{2}}$,

$$
u(x, y, z, 0)=x \sin y, u_{t}(x, y, z, 0)=y \cos z:
$$

ๆ. $u_{t t}=\Delta u+t x y \sin a z$,

$$
u(x, y, z, 0)=a z+b x y, u_{t}(x, y, z, 0)=0:
$$

t. $u_{t t}=\Delta u+a x y z e^{-b t}, u(x, y, z, 0)=2 x y$, $u_{t}(x, y, z, 0)=x \sin (\sqrt{2} y) \cos (\sqrt{2} z):$
q. $u_{t \iota}=\Delta u+a x y z \sin b t, u(x, y, z, 0)=x^{2} y z^{2}$, $u_{t}(x, y, z, 0)=y \sin \omega x e^{\omega z}:$
t. $u_{t \iota}=\Delta u+x y z \ln \left(1+t^{2}\right)$,
$u(x, y, z, 0)=y e^{x} \sin z, u_{t}(x, y, z, 0)=x z \sin y:$

ก. $u_{t t}=\Delta u+\frac{a y z t^{3}}{1+t^{2}}, u(x, y, z, 0)=x e^{y}, u_{t}(x, y, z, 0)=y e^{z}:$
р. $u_{t t}=u_{x x}+u_{y y}-x y t, u(x, y, 0)=0, u_{t}(x, y, 0)=x y$:
d. $u_{t t}=\Delta u-x y t$,
$u(x, y, z, 0)=\varphi(x, y, z), u_{t}(x, y, z, 0)=\psi(x, y, z):$
h. $u_{t t}=\Delta u+f(x, y, z), u(x, y, z, 0)=\varphi(x, y, z$,$) ,$
$u_{t}(x, y, 0)=\psi(x, y, z), \Delta \varphi=0, \Delta \psi=0:$

1. $u_{t t}=\Delta u+f(x, y, z) g(t), u(x, y, z, 0)=\varphi(x, y, z)$, $u_{t}(x, y, 0)=\psi(x, y, z), \Delta f=0$,
$\Delta \varphi=0, \Delta \psi=0, g \in C^{1}(t \geq 0):$
 4n2hh fuanhncitinn
ш. $u_{t t}=u_{x x}+b x^{2}, u(x, 0)=e^{-x}, u_{t}(x, 0)=c \cos x:$
f. $u_{t t}=u_{x x}+a x t, u(x, 0)=x, u_{t}(x, 0)=\sin x$:
q. $u_{t t}=u_{x x}+a e^{-t}, u(x, 0)=b \sin x, u_{t}(x, 0)=c \cos x$:

ๆ. $u_{t t}=u_{x x}+a \sin b t, u(x, 0)=\cos x, u_{t}(x, 0)=\sin x$:
t. $u_{t \ell}=u_{x x}+x \sin t, u(x, 0)=\sin x, u_{t}(x, 0)=\cos x$:
29. Oqunttinul

$$
\begin{aligned}
& u_{t t}=a^{2} u_{x x},-\infty<x<\infty, t>0 \\
& u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x),-\infty<x<\infty
\end{aligned}
$$

 u. tipt $\varphi(x)$ \& $\psi(x)$ \$nialighmiating Lition ta, wищз $u(0, t)=0$.

30. Uuntati, nn

$$
\begin{aligned}
& u_{t t}=a^{2} u_{x x}+f(x, t),-\infty<x<\infty, t>0 \\
& u(x, 0)=0, u_{t}(x, 0)=0,-\infty<x<\infty
\end{aligned}
$$

 vimup,
 Gusup:

 wúpnne plujhé mnuliggh பnu
ш. $u_{t t}=a^{2} u_{x x}, x>0, t>0$, $u(0, t)=0, t>0$,
$u(x, 0)=\sin x, u_{t}(x, 0)=x^{2}, x>0:$
p. $u_{t t}=a^{2} u_{x x}, x>0, t>0$,
$u(0, t)=0, t>0$,
$u(x, 0)=1-e^{x}, u_{t}(x, 0)=\operatorname{sh} x, x>0:$
q. $u_{t t}=a^{2} u_{x x}, x>0, t>0$,
$u_{x}(0, t)=0, t>0$,
$u(x, 0)=x-e^{x}, u_{t}(x, 0)=x^{2}, x>0:$
ๆ. $u_{t t}=a^{2} u_{x x}, x>0, t>0$,
$u_{x}(0, t)=0, t>0$,
$u(x, 0)=1+x^{3}, u_{t}(x, 0)=x^{2} e^{6 x}, x>0:$
t. $u_{t t}=a^{2} u_{x x}+e^{x} \cos t, x>0, t>0$, $u(0, t)=u(x, 0)=u_{t}(x, 0)=0, t>0, x>0$,
q. $u_{t t}=a^{2} u_{x x}+t \cos x, x>0, t>0$, $u(0, t)=u(x, 0)=u_{t}(x, 0)=0, x>0, t>0:$
t. $u_{t t}=a^{2} u_{x x}+\sin x \sin t, x>0, t>0$. $u_{x}(0, t)=u(x, 0)=u_{t}(x, 0)=0, x>0, t>0:$
ฉ. $u_{t t}=a^{2} u_{t x}+t e^{x}, x>0, t>0$,

$$
u_{x}(0, t)=u(x, 0)=u_{t}(x, 0)=0, x>0, t>0:
$$

ค. $u_{t t}=a^{2} u_{x x}+$ ch x cht $, x>0, t>0$, $u(0, t)=0, t>0$, $u(x, 0)=\operatorname{sh} x, u_{t}(x, 0)=\operatorname{ch} x, x>0:$
d. $u_{t t}=a^{2} u_{x x}+t \cos x, x>0, t>0$,

$$
\begin{aligned}
& u(0, t)=0, t>0 \\
& u(x, 0)=x, u_{t}(x .0)=x^{2}, x>0:
\end{aligned}
$$

h. $u_{t t}=a^{2} u_{x x}+\sin x \sin t, x>0, t>0$,
$u_{x}(0, t)=0, t>0$,
$u(x, 0)=\cos x, u_{t}(x, 0)=x^{2}, x>0:$

1. $u_{t t}=a^{2} u_{x x}+x e^{t}, x>0, t>0$,
$u_{x}(0, t)=0, t>0$,
$u(x, 0)=\cos x, u_{t}(x, 0)=x-e^{x}, x>0:$
 intupny
w. $u_{t t}=a^{2} u_{x x}, x>0, t>0$,

$$
\begin{aligned}
& u(0, t)=\mu(t), t>0 \\
& u(x, 0)=u_{t}(x, 0)=0, x>0:
\end{aligned}
$$

p. $u_{t t}=a^{2} u_{x x}, x>0, t>0$,
$u_{x}(0, t)=0, t>0$,
$u(x, 0)=0, x>0$,
$u_{t}(x, 0)=\left\{\begin{array}{l}0,0<x<c \\ v_{0}, c<x<2 c: \\ 0,2 c<x\end{array}\right.$
q. $u_{t t}=a^{2} u_{x x}, x>0, t>0$,
$u_{x}(0, t)=\nu(t), t>0$,
$u(x, 0)=u_{t}(x, 0)=0, x>0:$
ๆ. $u_{t t}=a^{2} u_{x x}, x>0, t>0$,

$$
\begin{aligned}
& u_{x}(0, t)-h u(0, t)=\chi(t), t>0, h>0 \\
& u(x, 0)=u_{t}(x, 0)=0, x>0
\end{aligned}
$$

t. $u_{t t}=a^{2} u_{x x}, x>0, t>0$.

$$
\begin{aligned}
& u_{x}(0, t)+h u_{t}(0, t)=0, t>0 \\
& u(x, 0)=u_{t}(x, 0)=\omega, x>0
\end{aligned}
$$

q. $u_{t t}=a^{2} u_{x x}, x>0, t>0$,
$u(0, t)=0, t>0$,
$u(x, 0)=f(x), u_{t}(x, 0)=a f^{\prime}(x), x>0$:
t. $u_{t t}=a^{2} u_{x x}, x>0, t>0$,
$u_{x}(0, t)=0, t>0$,
$u(x, 0)=f(x), u_{t}(x, 0)=a f^{\prime}(x), x>0$:
ฉ. $u_{t \iota}=a^{2} u_{x x}, x>0, t>0$,
$u_{x}(0, t)-h u(0, t)=0, t>0$,
$u(x, 0)=f(x), u_{t}(x, 0)=a f^{\prime}(x), x>0$:
ค. $u_{t t}=a^{2} u_{x x}, x>0, t>0$,
$u_{x}(0, t)+h u_{t}(0, t)=0, t>0$,
$u(x, 0)=f(x), u_{t}(x, 0)=a f^{\prime}(x), x>0$:
đ. $u_{\ell \ell}=a^{2} u_{x x}, x>0, t>0$,
$u_{x}(0, t)-h u(0, t)=0, t>0$,
$u_{t}(x, 0)=0, x>0$,
$u(x, 0)=\left\{\begin{array}{l}\sin \frac{\pi x}{l}, 0<x<l \\ 0, l<x\end{array}:\right.$
h. $u_{t t}=a^{2} u_{x x}, 0 \leq x \leq l, t>0$,
$u(0, t)=u(l, t)=0, t>0$,
$u(x, 0)=A \sin \frac{\pi x}{l}, u_{t}(x, 0)=0,0 \leq x \leq l:$

1. $u_{t t}=a^{2} u_{x x}, 0 \leq x \leq l, t>0$,
$u(0, t)=u_{x}(l, t)=0, t>0$,
$u(x, 0)=A x, u_{t}(x, 0)=0,0 \leq x \leq l:$
fu. $u_{t t}=a^{2} u_{s x}, \quad 0 \leq x \leq l, t>0$,
$u_{x}(0, t)=u_{x}(l, t)=0, t>0$,
$u(x, 0)=\cos \frac{\pi x}{l}, u_{t}(x, 0)=0,0 \leq x \leq l:$
d. $u_{t t}=a^{2} u_{x x}, 0 \leq x \leq l, t>0$,
$u(0, t)=0, m l u_{t l}(l, t)=-a^{2} u_{x}(l, t), t>0$,
$u(x, 0)=u_{t}(x, 0)=0,0 \leq x \leq l, u_{t}(l, 0)=-v:$

33. Lntotat tanujhicifuanhnaitnn

w. $u_{t t}=a^{2} u_{x x}+x \cos t, x>0, t>0$,

$$
\begin{aligned}
& u(0, t)=\sin t, t>0 \\
& u(x, 0)=\sin 2 x, u_{t}(x, 0)=e^{x}, x>0
\end{aligned}
$$

f. $u_{t t}=a^{2} u_{x x}+x t, x>0, t>0$,

$$
\begin{aligned}
& u(0, t)=t, t>0 \\
& u(x, 0)=\operatorname{sh} x, u_{t}(x, 0)=\operatorname{ch} x, x>0
\end{aligned}
$$

q. $u_{t t}=a^{2} u_{x x}+t \cos x, x>0, t>0$,
$u_{x}(0, t)=s h t, t>0$,
$u(x, 0)=\cos x, u_{t}(x, 0)=\sin x, x>0$:

 L t innunfumbuakitnhg:
35. Lnıdta htunlumi Juanhnn

$$
\begin{aligned}
& \quad u_{t t}=a^{2} \Delta u,-\infty<x, y, z<+\infty, t>0 \\
& \quad u(r, 0)=\varphi(r), u_{t}(r, 0)=\psi(r), r^{2}=x^{2}+y^{2}+z^{2}, 0 \leq r,
\end{aligned}
$$

36. LnıơtL

$$
\begin{aligned}
& u_{t t}=a^{2} \Delta u+f(r, t), 0 \leq r<+\infty, t>0 \\
& u(r, 0)=0, u_{t}(r, 0)=0, r^{2}=x^{2}+y^{2}+z^{2}, 0 \leq r
\end{aligned}
$$

fuanhno:
37. Lnıơt

$$
u_{t t}=a^{2} \Delta u,-\infty<x, y, z<+\infty, t>0
$$

u. $u(r, 0)=\left\{\begin{array}{l}u_{0}, r \leq r_{0} \\ 0, r>r_{0}\end{array}\right.$,

$$
u_{t}(r, 0)=0
$$

p. $u_{t}(r, 0)=\left\{\begin{array}{l}u_{0}, r \leq r_{0} \\ 0, r>r_{0}\end{array}\right.$.
$u(r, 0)=0:$

 nhúmah tinagulnu

$$
\begin{equation*}
u_{x y}+a(x, y) u_{x}+b(x, y) u_{y}+c(x, y) u=f(x, y) \tag{1}
\end{equation*}
$$

 stag и nannıah anm $y=0,0 \leq x \leq x_{0}$ \& $x=0,0 \leq y \leq y_{0}$ unnutinh unu unnumơ wndtpating

$$
\begin{equation*}
u(x, 0)=\varphi_{1}(x), u(0, y)=\varphi_{2}(y): \tag{2}
\end{equation*}
$$

©Cipunntiap Gimh, nn $\varphi_{1} \in C^{1}\left[0, x_{0}\right], \varphi_{2} \in C\left[0, y_{0}\right] \& \varphi_{1}(0)=\varphi_{2}(0)$:
 பпш, $\varphi_{1} \in C^{1}\left[0, x_{0}\right], \varphi_{2} \in C\left[0, y_{0}\right]$ и $\varphi_{1}(0)=\varphi_{2}(0)$, шщш (1)-(2) anınumjh fuarithna zhunuly t nnumod:

$$
\begin{equation*}
L(u)=u_{x y}+a u_{x}+b u_{y}+c u: \tag{3}
\end{equation*}
$$

 Concuta

$$
\begin{equation*}
L^{*}(v)=v_{x y}-(a v)_{x}-(b v)_{y}+c v: \tag{4}
\end{equation*}
$$

Uwhvimants: $R(x, y ; \xi, \eta)$ \$nıGughwa unsuncu t L nh\$antaighui wn-

$$
\begin{equation*}
L^{*}(R)=0 \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
R(\xi, y ; \xi, \eta)=e^{\int_{\eta}^{y} a\left(\xi, y^{\prime}\right) d y^{\prime}}, R(x, \eta ; \xi, \eta)=e^{\int_{\xi}^{x} a\left(x^{\prime}, \eta\right) d x^{\prime}} \tag{6}
\end{equation*}
$$

- щ̈шлumaitnha:

$$
\begin{gathered}
R(\xi, y ; \xi, \eta)=1 \\
R_{y}(\xi, y ; \xi, \eta)=a(\xi, y) R(\xi, y ; \xi, \eta) \\
R_{x}(x, \eta ; \xi, \eta)=b(x, \eta) R(x, \eta ; \xi, \eta):
\end{gathered}
$$

$$
R(x, y ; \xi, \eta)=R(\xi, \eta ; x, y):
$$

 htunlumi huunlniepjniticitng

 puanhsh nınпnıpرnıE:
 intuptinnu:

$$
\begin{equation*}
\left.u\right|_{\ell}=\varphi_{0},\left.u_{y}\right|_{\ell}=\varphi_{1} \tag{7}
\end{equation*}
$$

 Gurwn C^{2} L C^{1} quatinhg:

 $x_{1} \leq \xi \leq x_{2}, y_{1} \leq \eta \leq y_{2}$ nıппшаилша цпш, $\varphi_{0} \in C^{2}\left[x_{1}, x_{2}\right]$ и

$$
\begin{aligned}
u(x, y)= & \frac{1}{2} \varphi_{0}(h(y)) R(h(y), y ; x, y)+\frac{1}{2} \varphi_{0}(x) R(x, g(x) ; x, y)+ \\
+\int_{l_{x y}}[& \left(\frac{R}{2} \omega-\frac{\varphi_{0}}{2} R_{\xi}+b \varphi_{0} R\right) d \xi- \\
& \left.\quad-\left(\frac{R}{2} \varphi_{1}-\frac{\varphi_{0}}{2} R_{\eta}+a \varphi_{0} R\right) d \eta\right]+\int_{G_{x y}} R f d \xi d \eta
\end{aligned}
$$

nnuntin $G_{x y}$-п L $l_{x y}-\mathrm{n} \xi=x, \eta=y ; \xi=x^{\prime}=h(y), \eta=y^{\prime}=$
 Uسutpétia, hul $\omega(x)=\varphi_{0}^{\prime}(x)-\varphi_{1}(x) g^{\prime}(x)$:

38. 9uniti

$$
L(u)=u_{t t}-a^{2} u_{x x}, \quad a=\mathrm{const}
$$

outnuminnh חhưw

$$
\begin{gathered}
u_{t t}=a^{2} u_{x x}+f(x, t),-\infty<x<\infty, t>0 \\
u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x)
\end{gathered}
$$

purinhna:
39. 9 nilit

$$
L(u)=u_{t t}-a^{2} u_{x x} \pm c^{2} u, a=\mathrm{const}
$$

$$
\begin{gathered}
u_{t t}=a^{2} u_{x x} \pm c^{2} u+f(x, t),-\infty<x<, t>0 \\
u(x, 0)=\varphi(x), u_{t}(x .0)=\psi(x)
\end{gathered}
$$

Juanhnn:
40. Lnıơt

$$
\begin{aligned}
x^{2} u_{x x}-y^{2} u_{y y} & =0,-\infty<x<\infty, 1<y<\infty \\
u(x, 1) & =\varphi(x) . u_{y}(x, 1)=\psi(x)
\end{aligned}
$$

JuGinhn :

$$
u(0, t)=\varphi(t), u_{x}(0, t)=\psi(t)
$$

4 9nıpumjh

$$
u(x, x)=\varphi(x), u(x,-x) \psi(x), x \geq 0, \varphi(0)=v(0)
$$

Juarthncitinn:
ш. $u_{x x}-u_{t t}+a u_{x}+\frac{a^{2}}{4} u=0, a=$ const :

ค. $u_{x x}-u_{t t}+b u_{t}-\frac{b^{2}}{4} u=0, b=$ const :
9. $u_{x x}-u_{t t}+a u_{x}+b u_{t}+\frac{a^{2}}{4} u-\frac{b^{2}}{4} u=0$, $a=$ const,$b=$ const :

$$
u(x, 0)=\varphi(x), u(x, x)=\psi(x), \varphi(0)=\psi(0)
$$

43. 9unfit

$\left\{\begin{array}{l}u_{x}-v_{y}=0, \\ u_{y}-v_{x}=0,\end{array}\right.$

ш. $u(x, 0)=\varphi(x), v(x, 0)=\psi(x):$

ค. $u(x, x)=\varphi(x), v(x,-x)=\psi(x), x \geq 0$:
q. $u(x, 0)=\varphi(x), v(x,-x)=\psi(x), x \geq 0$:

ๆ. $u(x, 0)=\varphi(x), v(x, x)=\psi(x), x \geq 0$:
t. $u(x, 0)=\varphi(x)$
$v\left(x,-\frac{x}{2}\right)=\psi(x), x \geq 0, \varphi(0)=0, \psi(0)=0:$
44. 3nı.jg inul, nn
$a u_{x}+v_{y}=0, u_{y}+v_{x}=0$
 $a>0$ Lintoter méa
$u\left(x, \frac{x}{\sqrt{a}}\right)=\varphi(x), v\left(x,-\frac{x}{\sqrt{a}}\right)=\psi(x)$

9 L Int IU III

 ta panhwanın nh\$nıqhшjh hwчшuшกniuny

$$
\begin{equation*}
\rho \frac{\partial u}{\partial t}=\operatorname{div}(p \operatorname{grad} u)-q u+F(x, t): \tag{1}
\end{equation*}
$$

 pųumunnıu t

$$
\begin{equation*}
c \rho \frac{\partial u}{\partial t}=\operatorname{div}(k \operatorname{grad} u)+F(x, t) \tag{2}
\end{equation*}
$$

 pun hwuenwinntactn ta, wщш (2)-a qunntinus t

$$
\begin{equation*}
\frac{\partial u}{\partial t}=a^{2} \Delta u+f, a^{2}=\frac{k}{c \rho}, f=\frac{F}{c \rho} \tag{3}
\end{equation*}
$$

untupg, npuntn $\Delta u=u_{x_{1} x_{1}}+u_{x_{2} x_{2}}+u_{x_{3} x_{3}}$: (3) nuquuumntuf wádu-

 t qhй

 hwanhumennsu tia

 (\$ninhth ontGiph),

 htunlumbititn:

$$
\begin{equation*}
q=-\sigma \lambda \frac{\partial u}{\partial x} \tag{4}
\end{equation*}
$$

 sumunhrowifg:

$$
\begin{equation*}
q=\sigma \alpha\left(u-u_{0}\right) \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\rho \frac{\partial u}{\partial t}=\operatorname{div}(D \operatorname{grad} u)-q u+F(x, t) \tag{6}
\end{equation*}
$$

$$
i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m_{0}} \Delta \psi+V \psi
$$

 nnnzưua fuanthne, tot

 $q(t)$ \& $Q(t)$ Qtnúwưnhouaciannıu,

 Uusunhouraitng:

 Uwuunhowah nnnzưwa tanwiha fuanhnne, tpte

 Untjpe wapmenurigt L
 owjng wapurhwag t,
f. $x=0$ dwinncu upwhupwayncu t quah $q(t)$ hnug, hul $x=l$ owjng

 ghw:

 tipt

51. 2Lساس
 hul sumbenlinıjph otnusuunhowan $\psi(t)$ t:

 unhominnsu, hul ulqafamiqui qtnúmunhowan $\varphi(x, y)$:

 ptnrus:

§2. Eqnujhi u 4n2hh fuanhnnitn

$$
\begin{equation*}
\sum_{i=1}^{n} u_{x_{i} x_{i}}-u_{t}=-f\left(x_{1}, x_{2}, \cdots, x_{n}, t\right): \tag{1}
\end{equation*}
$$

 hhujg L Γ-nul S-h L Ω-h uhwunnniun:
 quntiti $C^{2}(Q) \cap C(\bar{Q})$ qumuha meunlumann wرَ $u\left(x_{1}, x_{2}, \cdots, x_{n}, t\right)$

 htun:

$$
\begin{align*}
& u_{t}=a^{2} u_{x x}+f(x, t), \quad t>0, \quad-\infty<x<+\infty \\
& \quad u(x, 0)=\varphi(x), \quad-\infty<x<+\infty \tag{2}
\end{align*}
$$

$$
\begin{equation*}
u(x, t)=\frac{1}{2 a \sqrt{\pi t}} \int_{-\infty}^{+\infty} \varphi(\xi) e^{-\frac{(x-\xi)^{2}}{4 a^{2} t}} d \xi \tag{3}
\end{equation*}
$$

untupny:

 \$necughmis

$$
\begin{gather*}
w_{t}=a^{2} w_{x x}, \quad t>0, \quad-\infty<x<+\infty \\
w(x, \tau, \tau)=f(x, \tau), \quad-\infty<x<+\infty \tag{4}
\end{gather*}
$$

 _nıơnıún unnuniút

$$
\begin{equation*}
u(x, t)=\int_{0}^{t} w(x, t, \tau) d \tau \tag{5}
\end{equation*}
$$

purimolent:

 unus t (2) fuannh ınıơnıu:
57. Uunnıqtil, nn

$$
\left.\dot{E(x, t)}=\frac{1}{\left(t-t_{0}\right)^{\frac{n}{2}}} e^{\left[-\frac{\sum_{i-1}^{n}\left(x_{i}-y_{i}\right)^{2}}{4\left(t-t_{0}\right)}\right.}\right]
$$

58. 3nıjg unul, nn (5) purimalunu nnnzunn \$nıalgghwa hwanhumantu t (2) łulinnh цnıónıư, nın

$$
w(x, t, \tau)=\frac{1}{2 a \sqrt{\pi(t-\tau)}} \int_{-\infty}^{+\infty} e^{-\frac{(x-\xi)^{2}}{4 a^{2}(t-\tau)}} f(\xi, \tau) d \xi
$$

u. $u_{t}=a^{2} u_{x x}, 0<x<+\infty, t>0$,

$$
u(0, t)=0, t>0, u(x, 0)=\varphi(x), 0<x<+\infty
$$

p. $u_{t}=a^{2} u_{x x}, 0<x<+\infty, t>0$,
$u_{x}(0, t)=0, t>0, u(x, 0)=\varphi(x), 0<x<+\infty:$
9. $u_{t}=a^{2} u_{x x}-h u, 0<x<+\infty, t>0$,
$u(0, t)=0, t>0, u(x, 0)=\varphi(x), 0<x<+\infty:$
ๆ. $u_{t}=a^{2} u_{x x}-h u, 0<x<+\infty, t>0$, $u_{x}(0, t)=0, t>0, u(x, 0)=\varphi(x), 0<x<+\infty:$
t. $u_{t}=a^{2} u_{x x}+f(x, t), 0<x<+\infty, t>0$, $u(0, t)=0, t>0, u(x, 0)=0,0<x<+\infty:$
q. $u_{t}=a^{2} u_{x x}+f(x, t), 0<x<+\infty, t>0$, $u_{x}(0, t)=0, t>0, u(x, 0)=0,0<x<+\infty:$
t. $u_{t}=a^{2} u_{x x}-h u+f(x, t), 0<x<+\infty, t>0$, $u(0, t)=0, t>0, u(x, 0)=\varphi(x), 0<x<+\infty:$
ฉ. $u_{t}=a^{2} u_{x x}-h u+f(x, t), 0<x<+\infty, t>0$, $u_{x}(0, t)=0, t>0, u(x, 0)=\varphi(x), 0<x<+\infty:$
p. $u_{t}=a^{2} u_{x x}-h u+f(x, t), 0<x<+\infty, t>0$, $u(0, t)=0, t>0, u(x, 0)=\varphi(x), 0<x<+\infty:$
d. $u_{t}=a^{2} u_{x x}-h u+f(x, t), 0<x<+\infty, t>0$, $u_{x}(0, t)=0, t>0, u(x, 0)=\varphi(x), 0<x<+\infty$:
60. $3 n \iota \jmath g$ unul, nn

$$
\begin{equation*}
u(x, t)=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} \Delta^{k} \tau\left(x_{1}, \cdots, x_{n}\right) \tag{6}
\end{equation*}
$$

\$nıágh
 tnlyn waquú nuen jnınmpuaynın $x_{i}-h$:

$$
u_{t}=u_{x x}+u_{y y}
$$

ш. $\left.u\right|_{S}=-4 t, u(x, y, 0)=1-x^{2}-y^{2}:$

ค. $\left.u\right|_{S}=-32 t^{2}-16 t, u(x, y, 0)=1-\left(x^{2}+y^{2}\right)^{2}$:
q. $\left.u\right|_{S}=1+4 t, u(x, y, 0)=1-x^{2}-y^{2}$:

ๆ. $\left.u\right|_{S}=e^{2 t+\cos \varphi+\sin \varphi}, 0 \leq \varphi \leq 2 \pi, u(x, y, 0)=e^{x+y}:$
t. $\left.u\right|_{S}=1+16 t+32 t^{2}, u(x, y .0)=\left(x^{2}+y^{2}\right)^{2}$:
q. $\left.u\right|_{S}=1+36 t+288 t^{2}+384 t^{3}, u(x, y, 0)=\left(x^{2}+y^{2}\right)^{3}$:
62. Uunniati, nn

$$
u(x, y, t)=\sum_{n=0}^{\infty} \frac{t^{k}}{p^{k} k!} \Delta^{k} \tau(x, y)
$$

$$
u_{x x}+u_{y y}=p u_{t}, p=c o n s t
$$

63. 3ntjg inul, $n \boldsymbol{n}$

$$
\begin{equation*}
u(x, t)=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} \Delta^{2 k} \tau(x) \tag{7}
\end{equation*}
$$

\$ncalghewa, nnuntin $\tau \in C^{\infty}\left(R^{n}\right)$, hul (7) zunpen 4wntis t wanuu-wn-
 waiquis nuen $t-h$, hwanhumanes t

$$
\begin{equation*}
\Delta \Delta u-u_{t}=0 \tag{8}
\end{equation*}
$$

แ. $u\left(x_{1}, x_{2}, \cdots, x_{n}, 0\right)=\sin l x_{1}:$
р. $u\left(x_{1}, x_{2}, \cdots, x_{n}, 0\right)=\cos l x_{1}$:
q. $u\left(x_{1}, x_{2}, \cdots, x_{n}, 0\right)=\operatorname{chl} x_{1}$:

ๆ $u\left(x_{1}, x_{2}, \cdots, x_{n}, 0\right)=\operatorname{shl} x_{1}$:
t. $u\left(x_{1}, x_{2}, \cdots, x_{n}, 0\right)=\sin l_{1} x_{1} \sin l_{2} x_{2}$:
q. $u\left(x_{1}, x_{2}, \cdots, x_{n}, 0\right)=\sin l x_{1} \cos l_{2} x_{2}$:
t. $u\left(x_{1}, x_{2}, \cdots, x_{n}, 0\right)=\cos l_{1} x_{1} \cos l_{n} x_{n}$:
‥ $u\left(x_{1}, x_{2}, \cdots, x_{n}, 0\right)=\cos l_{1} x_{1} \sin l_{2} x_{2}$:
p. $u\left(x_{1}, x_{2}, \cdots, x_{n}, 0\right)=\sin l_{1} x_{1} \sin l_{2} x_{2} \cdots \sin l_{n} x_{n}$:
d. $u\left(x_{1}, x_{2}, \cdots, x_{n}, 0\right)=\sin l_{1} x_{1}+\cos l_{n} x_{n}$:
h. $u\left(x_{1}, x_{2}, \cdots, x_{n}, 0\right)=e^{l_{1} x_{1}}$:
L. $u\left(x_{1}, x_{2}, \cdots, x_{n}, 0\right)=e^{l_{1} x_{1}+l_{2} x_{2}+\cdots+l_{n} x_{n}}$:
¡. $u(x, y, 0)=x^{2} y+x y^{2}+x y$:
б. $u(x, y, 0)=(x+y)^{5}$:
4. $u(x, y, z, 0)=\left(x^{2}+y^{2}+z^{2}\right)^{2}$:
h. $u(x, y, z, 0)=(x y z)^{2}$:
ð. $u(x, y, z, 0)=(x y z)^{3}$:
ท. $u(x, y, z, 0)=x^{2} y^{2}+x^{2} z^{2}+y^{2} z^{2}$:
б. $u(x, y, z, 0)=x^{3}+y^{3}+z^{3}$:

$$
\begin{equation*}
u(x, t)=\sum_{k=0}^{\infty} \frac{t^{2 k}}{(2 k)!} \Delta^{2 k} \tau(x)+\sum_{k=0}^{\infty} \frac{t^{2 k+1}}{(2 k+1)!} \Delta^{2 k} \nu(x) \tag{9}
\end{equation*}
$$

 gmó wiquis mainus-wn-wanus wómagta, hwanhowantu t

$$
\begin{equation*}
\Delta \Delta u-u_{t t}=0 \tag{10}
\end{equation*}
$$

ш. $u\left(x_{1}, x_{2}, \cdots, x_{n}, 0\right)=\sin x_{1}, u_{t}\left(x_{1}, x_{2}, \cdots, x_{n}, 0\right)=\cos x_{1}$:
н. $u(x, y, z, 0)=\left(x^{3}+y^{3}+z^{3}\right)^{2}, u_{t}(x, y, z, 0)=x^{2} y^{2} z^{2}$:
q. $u(x, y, z, 0)=(x+y+z)^{3}, u_{t}(x, y, z, 0)=(x y z)^{3}$:

ๆ. $u\left(x_{1}, x_{2}, \cdots, x_{n}, 0\right)=\operatorname{chl}_{1}, u_{t}\left(x_{1}, x_{2}, \cdots, x_{n}, 0\right)=\operatorname{shm} x_{1}$:
t. $u\left(x_{1}, x_{2}, \cdots, x_{n}, 0\right)=e^{a x_{1}}, u_{t}(x, 0)=e^{b x_{1}}$:

9 L กr iu IV

$$
\begin{equation*}
-\operatorname{div}(p \operatorname{grad} u)+q u=F(x): \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\Delta=-f, f=\frac{F}{p} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\Delta u=0 \tag{3}
\end{equation*}
$$

$$
\left.u\right|_{S}=f_{1}
$$

$$
\left.\frac{\partial u}{\partial n}\right|_{S}=f_{2}
$$

$$
\frac{\partial u}{\partial n}+\left.h u\right|_{S}=f_{3}
$$

$$
f(x, t)=a^{2} f(x) e^{i \omega t}
$$

$$
\Delta u+k^{2} u=-f(x), k^{2}=\frac{\omega^{2}}{a^{2}}
$$

 gnsum (nh\$nulaghujh) fuanhncitnn:

$$
\psi(x, t)=e^{-\frac{i}{\hbar} E t} \psi(x)
$$

 umpưman

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m_{0}} \Delta \psi+V \psi=E \psi: \tag{2}
\end{equation*}
$$

 hnigh husumutan hwપ̆uumisuma:

$$
\operatorname{div}(\varepsilon \mathbf{E})=4 \pi \rho, \quad \operatorname{rot} \mathbf{E}=0
$$

$$
\operatorname{div}(\mu \mathbf{H})=0, \operatorname{rot} \mathbf{H}=\frac{4 \pi}{c} \mathbf{I}
$$

$$
\Delta u=-\frac{4 \pi}{\varepsilon} \rho:
$$

Lneotll htinlumul fuCinhncitnn

 \$hahtumber sthampmanisn:

 Cuting

p. nht

w. unnuwd t hunnnnesh unnitaghwih wndtipe,

 ntュnnıцп

$$
\Delta u=f
$$

$$
\Delta=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}:
$$

$$
\Delta u=0 \text { : }
$$

 ghwitnh quwuf t:
 t htinlumi musjumakitnha.
ш. $u(x) \in C^{0}(D \cup S) \cap C^{2}(D)$,

$$
u(x)=\varphi(x), \quad x \in S
$$

 t:
 ahl \$ntalighw, nnn purumpunh

$$
\frac{\partial u}{\partial n}=\varphi(x), \quad x \in S
$$

 $n n$

$$
\begin{equation*}
\int_{S} \varphi(x) d S=0: \tag{1}
\end{equation*}
$$

 6hzun t ппицшы :
$f(z)=u(x, y)+i v(x, y), z=x+i y$ wamıhunhl \$nıalghm, h

74. 9nati Lumimuh ouptruinnnh intupa

q. ustanh पnnnnhGumathnnux $x=r \sin \theta \cos \varphi, y=r \sin \theta \sin \varphi, z=$ $r \cos \theta$:
 $A\left(x^{2}-y^{2}\right)+B x y+C x+D y$ feqqueañưn hmanhumanıut $u_{x x}+u_{y y}=$

 aha
ш. $u(a, \varphi)=A$:
p. $u(a, \varphi)=A \cos \varphi$:
q. $u(a, \varphi)=A+B y$:

ท. $u(a, \varphi)=A x y$:
t. $u(a, \varphi)=A+B \sin \varphi$:
q. $u(a, \varphi)=A \sin ^{2} \varphi+B \cos ^{2} \varphi$:

ш. $u_{\rho}(a, \varphi)=A$:
p. $u_{\rho}(a, \varphi)=A x$:
q. $u_{\rho}(a, \varphi)=A\left(x^{2}-y^{2}\right)$:
n. $u_{\rho}(a, \varphi)=A \cos \varphi+B$:
t. $u_{\rho}(a, \varphi)=A \sin \varphi+B \sin ^{3} \varphi$:
77. 4infita $0 \leq \rho<a, 0 \leq \varphi \leq 2 \pi$ 2nqwih npuntư nnn24wó

wnotpatinha:

$$
u(a, \varphi)=\frac{u_{0}}{\alpha} \varphi, u(\rho, 0)=0, u(\rho, \alpha)=u_{0}:
$$

$$
\left.u\right|_{x<0, y=0}=\varphi_{1},\left.u\right|_{x>0, y=0}=\varphi_{2}:
$$

$$
\left.u\right|_{z=0}=u_{1},\left.u\right|_{z=h}=u_{2}
$$

$$
u(x, 0)=u_{1}, u(x, b)=u_{2},\left.u_{x}\right|_{x=0, x=a}=0:
$$

 nnh husump $\left.u\right|_{\rho=a}=0$:
 Gntư, npnaig huưun

$$
\left.\frac{\partial u}{\partial n}\right|_{\rho=a}=B:
$$

 w. $\left.u\right|_{\rho=a}=u_{1},\left.u\right|_{\rho=b}=u_{2}$,
f. $\left.u\right|_{\rho=a}=u_{1},\left.\frac{\partial u}{\partial n}\right|_{\rho=b}=C$,
9. $\left.\frac{\partial u}{\partial n}\right|_{\rho=a}=B,\left.u\right|_{\rho=b}=C$,
88. 4unitl
w. $\Delta u=1$,
p. $\Delta u=A \rho+B$

$$
\left.u\right|_{\rho=a}=0
$$

89. 4infit
ш. $\Delta u=1$,
f. $\Delta u=A+\frac{B}{\rho}$

$$
\left.u\right|_{\rho=a}=0,\left.u\right|_{\rho=b}=0:
$$

 hul $\rho=b$-í u_{2} :
91. Thgnıp $u=u\left(x_{1}, \cdots, x_{n}\right)$-n hwnunchly \$nıxigher t haz $n n$

ш. $u(x+h), h=\left(h_{1}, \cdots, h_{n}\right)$-п humunwinnta utiqunn t,

ғ. $u(\lambda h), \lambda$-a ulumjun huuenwinniat,
9. $u(C x), C$-a huuunuinnia, onpnqnauis ouinnhg t,

ท. $\frac{\partial u}{\partial x_{1}} \frac{\partial u}{\partial x_{2}}(n=2)$,
t. $\frac{\partial u}{\partial x_{1}} \frac{\partial u}{\partial x_{2}}(n>2)$,
q. $x_{1} \frac{\partial u}{\partial x_{1}}+x_{2} \frac{\partial u}{\partial x_{2}}+x_{3} \frac{\partial u}{\partial x_{3}},(n=3)$,
t. $x_{1} \frac{\partial u}{\partial x_{1}}-x_{2} \frac{\partial u}{\partial x_{2}},(n=2)$,

ก. $x_{2} \frac{\partial u}{\partial x_{1}}-x_{1} \frac{\partial u}{\partial x_{2}},(n=2)$,
p. $\frac{\frac{\partial u}{\partial x_{1}}}{\left(\frac{\partial u}{\partial x_{1}}\right)^{2}+\left(\frac{\partial u}{\partial x_{2}}\right)^{2}},(n=2)$,
d. $\left(\frac{\partial u}{\partial x_{1}}\right)^{2}-\left(\frac{\partial u}{\partial x_{2}}\right)^{2},(n=2)$,
h. $\left(\frac{\partial u}{\partial x_{1}}\right)^{2}+\left(\frac{\partial u}{\partial x_{2}}\right)^{2},(n=2)$:
 \$niciughwa humúnciny t
ш. $x_{1}^{3}+k x_{1} x_{2}^{2}$,

ค. $x_{1}^{2}+x_{2}^{2}+k x_{3}^{2}$,
q. $e^{2 x_{1}} \operatorname{ch} k x_{2}$,

ๆ. $\sin 3 x_{1} \operatorname{ch} k x_{2}$,
t. $\frac{1}{|x|^{k}},|x|^{2}=\sum_{i=1}^{n} x_{i}^{2},|x| \neq 0$:

$$
v(x)=\frac{1}{|x|^{n-2}} u\left(\frac{x}{|x|^{2}}\right)
$$

94. Trgnip ρ-a 4φ-a plitnujha unnnnhawinatina ta humpnipjua

w. $u(r, \varphi)=r^{n} \cos n \varphi, v(r, \varphi)=r^{n} \sin n \varphi$ \$ncalighwitinn humunahl tif uifnng hurpnipjug unu,
f. $u(r, \varphi)=r^{-n} \cos n \varphi, v(r, \varphi)=r^{-n} \sin n \varphi, w(r)=\ln r$ \$nuCu4-
 ulpapGultionhg:
 Citnlumjuguncú t nnutu

$$
\sum_{k=0}^{\infty} r^{k}\left(a_{k} \cos k \varphi+b_{k} \sin k \varphi\right)
$$

 $u(x, y)$ \$nıáqghwa

$$
u(x, y)^{\prime}=\sum_{k=0}^{\infty} r^{-k}\left(a_{k} \cos k \varphi+b_{k} \sin k \varphi\right)
$$

 hnuluma husunuenniacitin tia:
97. 3nıg nnul

$$
\begin{align*}
u(x)=\sum_{k=0}^{\infty}(-1)^{k}\left(\frac{x_{n}^{2 k}}{(2 k)!} \Delta^{k} \tau\left(x_{1}, \cdots, x_{n-1}\right)+\right. \tag{2}\\
\left.\frac{x_{n}^{2 k+1}}{(2 k+1)!} \Delta^{k} \nu\left(x_{1}, \cdots, x_{n-1}\right)\right)
\end{align*}
$$

98. Uunnatat, nn

$$
E(x, y)=\left\{\begin{array}{l}
\frac{1}{n--2}|x-y|^{2-n}, n>2 \\
-\ln |x-y|, n=2
\end{array}\right.
$$

99. Oqunltinl (2) fwolling intot

$$
\Delta u(x, y, z)=0, u(x, y, 0)=g(x, y), u_{z}(x, y, 0)=h(x, y)
$$

4n2hh fuanhnne, tinf

ш. $g=x+2 y, h=2 x-y^{2}$:
p. $g=x e^{y}, h=0$:
q. $g=x y+x^{2}, h=e^{x}+y$:
п. $g=x \sin y, \quad h=\cos y$:
t. $g=x^{3}+2, h=2 x^{2}-y$:
q. $g=\cos 2 x, h=x-2 \sin 2 y$:
100. $\mathrm{r}^{\circ} \mathrm{a}$ wndte t hunlumunn पtnmantı $u(a)$-ha, nnultuah $u(r)$-n $K: a<r<b, 0 \leq \varphi \leq 2 \pi, 0<a<b<\infty$, oqulunus ınธ̆ humúnahly, \bar{K}-nus mananhumen $4(a<c<b)$
ш. $u(c)=T_{0}, u(b)=T:$

ค. $u(c)=T, u_{r}(b)=U$:
q. $u(c)=T, u_{r}(b)+h u(b)=W$:

ๆ. $u_{r}(c)=U, u(b)=T$:
 qh $u(r)$-п $K: a<r<b, 0 \leq \varphi \leq 2 \pi, 0<a<b<\infty$ onulinus Lhah huminahly, \bar{K}-nıu mananhumen $\mathrm{L}(a<c<b, a<d<b)$
w. $u(c)=T_{0}, u(d)=T_{1}$:
f. $u_{r}(c)=U, u(d)=T$:

 humunnuhl \$nı[ulghwih qnıưmh untupnu $G(x, y)=E(x, y)+g(x, y)$.
f. D unhnnisph S tanh unu $G(x, y)$ \$niflighwis hulurump t annjh:
 humunnlejncaiting
 nnıpJuuf y Ltinh.

p. D^{+}unhnnısph S tinh unu huqumumet t qnnjp:

 - $\left.E(x, y)\right|_{S}$ wnotap :

$$
\begin{equation*}
G\left(z, z_{0}\right)=\ln \frac{1}{\left|w\left(z, z_{0}\right)\right|} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
u(x)=-\frac{1}{\omega_{n}} \int_{S} f(y) \frac{\partial G(x, y)}{\partial \nu} d S_{y} \tag{2}
\end{equation*}
$$

 nư unwunn uptnmjן sumbinturit $\omega_{n}=\frac{2 \pi^{n / 2}}{\Gamma(n / 2)}$:

Uuh

u. mban nefh

$$
G(x, y)=E(x, y)+g(x, y)
$$

 unchnfumumacitnh;

$$
\begin{equation*}
\frac{\partial G}{\partial n} \left\lvert\, . \varsigma=-\frac{\omega_{n}}{|S|}\right. \tag{3}
\end{equation*}
$$

 Lutung:

$$
\begin{equation*}
\left.\frac{\partial G}{\partial n}\right|_{S}=0 \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
u(x)=\frac{1}{\omega_{n}} \int_{S} f(y) G(y, x) d \sigma_{y}+\frac{1}{|S|} \int_{S} u(y) d \sigma_{y} \tag{5}
\end{equation*}
$$

purcimaluny:

$$
\begin{equation*}
u(x)=-\int_{S} f(y) G(y, x) d \sigma_{y} \tag{6}
\end{equation*}
$$

purimolunu:
 9phah \$nılughwa:

 husump:

112. 4unnıgta $z=0, z=l$ L $x=0$ humpntpjntaitinnly uwhuw-

 husum, tipt

$$
u(x, 0)=\left\{\begin{array}{l}
0, \\
V<0 \\
V, x>0
\end{array}\right.
$$

 \$nıalghma:

 ghéfuanhnn u\$tnujh husump:
118. 4mnntgtı R_{2} mnuપ̆nnu
w. 2nquah,
f. पhum 2 newah.
q. punnnn 2пquan,
a. $\alpha=\frac{\pi}{n}$ ($n-\mathrm{n}$ famburat t) waluntany utigennnh,
3. Lhumgoint
a. pumnnn quanh
? hnhtuatn fuannh 9phah \$nıalughwaitne:

 าшunnnıəjncun:

 шщ्шш

$$
v(x)=\sum_{i=1}^{n} x_{i} \frac{\partial u}{\partial x_{i}}
$$

q. $x>0, y>0$ punnnn.

ๆ. $0<y<\pi$ 2tnun:

 dulu haintantah \$nıalughe t:

Uuhviuaints.

$$
\begin{equation*}
u(x)=\int_{D} E(x, y) \mu(y) d \tau_{y} \tag{1}
\end{equation*}
$$

 hhúampun intơnluat:

 t $D \cup S$-hg пnınu, $u(\infty)=0$, tipt $n>2$, hul $n=2$ ntuщpnıư wonıu t hąuitu $\ln |x|(x \rightarrow \infty)$ \$nıalighwa:

 t

$$
\Delta u=-\omega_{n} \mu(x)
$$

 $\left(\omega_{n}=\frac{1}{\Gamma\left(\frac{n}{2}\right)} 2 \pi^{\frac{n}{2}}\right)$:

Uuhvumantu.

$$
\begin{equation*}
w(x)=\int_{S} \mu(y) \frac{\partial E(x, y)}{\partial n} d \sigma \tag{2}
\end{equation*}
$$

 Cutng.

$$
\begin{gather*}
w_{+}\left(x_{0}\right)=w\left(x_{0}\right)-\frac{\omega_{n}}{2} \mu\left(x_{0}\right) \\
w_{-}\left(x_{0}\right)=w\left(x_{0}\right)+\frac{\omega_{n}}{2} \mu\left(x_{0}\right): \tag{3}
\end{gather*}
$$

 htinlumi

$$
w_{-}\left(x_{0}\right)-w_{+}\left(x_{0}\right)=\omega_{n} \mu(x)
$$

purumbln:
 nnci nith htinlumi wnotapitnn

$$
\int_{S} \frac{\partial E(x, y)}{\partial n} d \sigma=\left\{\begin{array}{l}
0, \quad x \notin D \cup S \tag{4}\\
-\omega_{n}, \quad x \in D
\end{array}:\right.
$$

$$
\begin{equation*}
\int_{S} \frac{\partial E(x, y)}{\partial n} d \sigma=-\frac{\omega_{n}}{2} \tag{5}
\end{equation*}
$$

tpt $x \in S$:

$$
\begin{equation*}
w(x)=-\int_{S} \mu(y) \frac{\cos \varphi}{|y-x|^{n-1}} d \sigma \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
v(x)=\int_{S} \mu(y) E(x, y) d \sigma: \tag{7}
\end{equation*}
$$

f. tpt $n>2$,шщுш $v(x) \rightarrow 0 \frac{1}{\mid x^{n-2}}$ mpmantpjwif, tpf $|x| \rightarrow \infty$, hul

q. $v(x)$-a wananhmun \$nıalughus t R^{n}-nıu:
 unm unnıư

$$
\begin{equation*}
\frac{\partial u(x)}{\partial n_{0}}=-\int_{S} \mu(y) \frac{\cos \psi}{|y-x|^{n-1}} d \sigma_{y} \tag{8}
\end{equation*}
$$

$$
-\int_{S} \mu(y) \frac{\cos \psi_{0}}{\left|y-x_{0}\right|^{n-1}} d \sigma_{y}
$$

$$
\begin{aligned}
& {\left[\frac{\partial v\left(x_{0}\right)}{\partial n_{0}}\right]_{+}=-\int_{S} \mu(y) \frac{\cos \psi_{0}}{\left|y-x_{0}\right|^{n-1}} d \sigma_{y}-\frac{\omega_{n}}{2} \mu\left(x_{0}\right)} \\
& {\left[\frac{\partial v\left(x_{0}\right)}{\partial n_{0}}\right]_{-}=-\int_{S} \mu(y) \frac{\cos \psi_{0}}{\left|y-x_{0}\right|^{n-1}} d \sigma+\frac{\omega_{n}}{2} \mu\left(x_{0}\right):}
\end{aligned}
$$

$$
\left[\frac{\partial v\left(x_{0}\right)}{\partial n_{0}}\right]_{-}-\left[\frac{\partial v\left(x_{0}\right)}{\partial n_{0}}\right]_{+}=\omega_{n} \mu\left(x_{0}\right):
$$

 qGinh owquiwjhé unnitighwin:

125. qunctia $a \leq r \leq b$ uptinh 2 enpennus $\mu=\mu_{0}$ humunuennici

126. Quncta a zennuennu qunnus $\mu=\mu_{1}$ L $a<b<r<c$ uptnhl

 ingptinh untindued t tulunnuuunuenhly nuzung:

 ưw:
139. Lnıdtal Thphłulth fuanhnn पhuwhuppnıpjus husiun:

9 L กr hu V
 ФПФחhulululutrr ulsusuul quu snrrrtr tqulule

§1.\$nınhtр tnuciulu

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(p(x) \frac{\partial u}{\partial x}\right)-q(x) u=\rho(x) \frac{\partial^{2} u}{\partial t^{2}} \tag{1}
\end{equation*}
$$

$$
\begin{array}{r}
\alpha u(0, t)+\beta \frac{\partial u(0, t)}{\partial x}=0, \\
\gamma u(l, t)+\delta \frac{\partial u(l, t)}{\partial x}=0 \tag{2}
\end{array}
$$

 $\left.\gamma^{2}+\delta^{2} \neq 0\right)$ ᄂ

$$
\begin{equation*}
u(x, 0)=\varphi(x), \quad \frac{\partial u(x, 0)}{\partial t}=\psi(x), \quad 0 \leq x \leq l \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
u(x, t)=X(x) T(t) \tag{4}
\end{equation*}
$$

 nı $T(t) \neq 0$, unmantu tap

$$
\begin{equation*}
\frac{\frac{d}{d x}\left[p(x) X^{\prime}(x)\right]-q(x) X(x)}{\rho(x) X(x)}=\frac{T^{\prime \prime}(t)}{T(t)}: \tag{5}
\end{equation*}
$$

$$
\begin{gather*}
T^{\prime \prime}(t)+\lambda T(t)=0 \tag{6}\\
\frac{d}{d x}\left[p(x) X^{\prime}(x)\right]+[\lambda \rho(x)-q(x)] X(x)=0: \tag{7}
\end{gather*}
$$

 4ntatimáa

$$
\begin{array}{r}
\alpha X(0)+\beta X^{\prime}(0)=0 \\
\gamma X(l)+\delta X^{\prime}(l)=0 \tag{8}
\end{array}
$$

 nıah ņannjwliwa

$$
\int_{0}^{l} \rho(x) X_{k}^{2}(x) d x=1
$$

 dtpatanh nnn2 huenlncepjncaitin.

$$
\int_{0}^{l} \rho(x) X_{k}(x) X_{m}(x) d x=0 \quad(k \neq m)
$$

9. pninn utichulima wndtpatna hnulymatia,

$$
\lambda_{1}<\lambda_{2}<\cdots<\lambda_{n}<\cdots, \quad \lim \lambda_{n}=+\infty
$$

$$
T_{k}(t)=A_{k} \cos \sqrt{\lambda_{k}} t+B_{k} \sin \sqrt{\lambda_{k}} t
$$

$$
u_{k}(x, t)=X_{k}(x) T_{k}(t)=\left(A_{k} \cos \sqrt{\lambda_{k}} t+B_{k} \sin \sqrt{\lambda_{k}} t\right) X_{k}(x)
$$

$$
\begin{equation*}
u(x, t)=\sum_{k=1}^{\infty}\left(A_{k} \cos \sqrt{\lambda_{k}} t+B_{k} \sin \sqrt{\lambda_{k}} t\right) X_{k}(x): \tag{10}
\end{equation*}
$$

 UwGCitanha, unwantu tap

$$
\begin{gather*}
\sum_{k=1}^{\infty} A_{k} X_{k}(x)=\varphi(x), \tag{11}\\
\sum_{k=1}^{\infty} B_{k} \sqrt{\lambda_{k}} X_{k}(x)=\psi(x): \tag{12}
\end{gather*}
$$

 nıGtGap:

$$
\begin{gathered}
A_{k}=\int_{0}^{l} \rho(x) \varphi(x) X_{k}(x) d x, \\
B_{k}=\frac{1}{\sqrt{\lambda_{k}}} \int_{0}^{l} \rho(x) \psi(x) X_{k}(x) d x:
\end{gathered}
$$

$$
u_{t t}=a^{2} u_{x x}
$$

$$
T^{\prime \prime}(t)+a^{2} \lambda T(t)=0
$$

$$
X^{\prime \prime}(x)+\lambda X(x)=0, \quad 0<x<l:
$$

$$
X(0)=0, \quad X(l)=0
$$

$$
\lambda_{k}=\left(\frac{\pi k}{l}\right)^{2}, \quad k=1,2, \cdots:
$$

$$
X_{k}(x)=\sin \frac{\pi k}{l} x, \quad k=1,2, \cdots,
$$

 atann unnunus ta

$$
T_{k}(t)=A_{k} \cos \frac{a \pi k}{l} t+B_{k} \sin \frac{a \pi k}{l} t
$$

intupn4:

$$
\begin{gather*}
u_{x x}-\frac{1}{a^{2}} u_{t t}=f(x, t) \tag{13}\\
a_{1} u_{x}(0, t)+b_{1} u(0, t)=\mu(t), \\
a_{2} u_{x}(l, t)+b_{2} u(l, t)=\nu(t), \tag{14}\\
a_{k}^{2}+b_{k}^{2} \neq 0 \quad k=1,2, \\
u(x, 0)=\varphi(x), \quad u_{t}(x, 0)=\psi(x): \tag{15}
\end{gather*}
$$

 ntuypniú nnnatilh \$nıalghujh

$$
u(x, t)=v(x, t)+w(x, t)
$$

unnumphansunç, nnuntin

$$
w(x, t)=\left(\gamma_{1} x^{2}+\gamma_{2} x+\gamma_{3}\right) \mu(t)+\left(\delta_{1} x^{2}+\delta_{2} x+\delta_{3}\right) \nu(t)
$$

 htonlumi fumne tuannpa

$$
\begin{gather*}
v_{x x}-\frac{1}{a^{2}} v_{t t}=F(x, t) \tag{16}\\
a_{1} v_{x}(0, t)+b_{1} v(0, t)=0 \\
a_{2} v_{x}(l, t)+b_{2} v(l, t)=0 \tag{17}\\
v(x, 0)=\varphi_{1}(x), \quad v_{t}(x, 0)=\psi_{1}(x), \tag{18}
\end{gather*}
$$

nnuntr

$$
\begin{gathered}
F(x, t)=f(x, t)-w_{x x}+\frac{1}{a^{2}} w_{t t} \\
\varphi_{1}(x)=w(x, 0), \quad \psi_{1}(x)=\psi(x)-w_{t}(x, 0):
\end{gathered}
$$

tapunntiap, nn qnjnipjnia nıín

$$
\begin{gather*}
X^{\prime \prime}+\lambda X=0 \tag{19}\\
a_{1} X^{\prime}(0)+b_{1} X(0)=0, \quad a_{2} X^{\prime}(l)+b_{2} X(l)=0 \tag{20}
\end{gather*}
$$

$$
\begin{equation*}
F(x, t)=\sum_{k=1}^{\infty} c_{k}(t) X_{k}(x) \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
\varphi_{1}(x)=\sum_{k=1}^{\infty} d_{k} X_{k}(x), \quad \psi_{1}(x)=\sum_{k=1}^{\infty} e_{k} X_{k}(x) \tag{22}
\end{equation*}
$$

(16)-(18) fu[innh inionntun qhiunntiap

$$
\begin{equation*}
v(x, t)=\sum_{k=1}^{\infty} T_{k}(t) X_{k}(x) \tag{23}
\end{equation*}
$$

 (22) பtinıncơncpjnıacitng, Yuunwamap

$$
\begin{align*}
& \sum_{k=1}^{\infty}\left(T_{k}(t) X_{k}^{\prime \prime}(x)-\frac{1}{a^{2}} T_{k}^{\prime \prime}(t) X_{k}(x)\right)=\sum_{k=1}^{\infty} c_{k}(t) X_{k}(x) \tag{24}\\
& \sum_{k=1}^{\infty} T_{k}(0) X_{k}(x)=\sum_{k=1}^{\infty} d_{k} X_{k}(x) \tag{25}\\
& \sum_{k=1}^{\infty} T_{k}^{\prime}(0) X_{k}(x)=\sum_{k=1}^{\infty} e_{k} X_{k}(x):
\end{align*}
$$

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left(T_{k}^{\prime \prime}(t)+a^{2} \lambda_{k} T_{k}(t)\right) X_{k}(x)=-a^{2} \sum_{k=1}^{\infty} c_{k}(t) X_{k}(x): \tag{26}
\end{equation*}
$$

 hg $\mathrm{L}(26)$-hg unmanus tap htunlumi fuanhne

$$
\begin{gather*}
T_{k}^{\prime \prime}(t)+a^{2} \lambda_{k} T_{k}(t)=-a^{2} c_{k}(t) \tag{27}\\
T_{k}(0)=d_{k}, \quad T_{k}^{\prime}(0)=e_{k}, k \in N
\end{gather*}
$$

$$
f(x, t) \equiv f(x)
$$

 $\nu(t)=\nu_{0} L$

$$
\begin{equation*}
a_{1} b_{2}-a_{2} b_{1}-b_{1} b_{2} l \neq 0 \tag{28}
\end{equation*}
$$

шщит

$$
u(x, t)=v(x, t)+w(x)
$$

$$
\begin{array}{r}
w^{\prime \prime}(x)=f(x) \\
a_{1} w^{\prime}(0)+b_{1} w(0)=\mu_{0} \tag{29}\\
a_{2} w^{\prime}(l)+b_{2} w(l)=\nu_{0}
\end{array}
$$

$$
\begin{gathered}
v_{x x}-\frac{1}{a^{2}} v_{t t}=0 \\
a_{1} v_{x}(0, t)+b_{1} v(0, t)=0, \\
a_{2} v_{x}(l, t)+b_{2} v(l, t)=0, \\
v(x, 0)=\varphi(x)-w(x), \quad v_{t}(x, 0)=\psi(x):
\end{gathered}
$$

$$
u_{t t}=a^{2} u_{x x}
$$

(hmswutin tanmjhi mmsowaitin)

w. $u(0, t)=u(l, t)=u(x, 0)=0, u_{t}(x, 0)=\sin \frac{2 \pi}{l} x:$
p. $u(0, t)=u_{x}(l, t)=0, u(x, 0)=\sin \frac{5 \pi}{2 l} x, u_{t}(x, 0)=\sin \frac{\pi}{2 l} x:$
q. $u(0, t)=u_{x}(l, t)=0, u(x, 0)=x$,

$$
u_{t}(x, 0)=\sin \frac{\pi}{2 l} x+\sin \frac{3 \pi}{2 l} x
$$

ท. $u_{x}(0, t)=u(l, t)=0, u(x, 0)=\cos \frac{\pi}{2 l} x$,

$$
u_{t}(x, 0)=\cos \frac{3 \pi}{2 l} x+\cos \frac{5 \pi}{2 l} x:
$$

t. $u(0, t)=u(l, t)=u_{t}(x, 0)=0$,

$$
u(x, 0)=\left\{\begin{array}{l}
\frac{h}{c} x, 0 \leq x \leq c \\
\frac{h(l-x)}{l-c}, c \leq x \leq l
\end{array}\right.
$$

q. $u(0, t)=u(l, t)=u_{t}(x, 0)=0, u(x, 0)=h x(l-x)$:
t. $u(0, t)=u(l, t)=u(x, 0)=0, u_{t}(x, 0)=h x(l-x)$:
п. $u_{x}(0, t)=u_{x}(l, t)=0, u(x, 0)=\cos \frac{\pi}{l} x$,
$u_{t}(x, 0)=\cos \frac{5 \pi}{l} x:$
p. $u(0, t)=u(l, t)=u(x, 0)=0$,

$$
u_{t}(x, 0)=\left\{\begin{array}{l}
v_{0} \cos \frac{\pi(x-c)}{h},|x-c|<\frac{h}{2} \\
0,|x-c|>\frac{h}{2}
\end{array}:\right.
$$

d. $u(0, t)=u_{x}(l, t)=u_{t}(x, 0)=0, u(x, 0)=r x, r=$ const $:$
h. $u(0, t)=u(l, t)=u(x, 0)=0$,

$$
u_{t}(x, 0)=\left\{\begin{array}{l}
0,0 \leq x<c-\delta \\
v_{0} ; c-\delta \leq x \leq c+\delta: \\
0, c+\delta<x \leq l
\end{array}\right.
$$

เ. $u_{x}(-l, t)=u_{x}(l, t)=u_{t}(x, 0)=0, u(x, 0)=-\varepsilon x$:
|u. $u_{x}(0, t)=u_{x}(l, t)=0, u(x, 0)=x, u_{t}(x, 0)=1:$
b. $u_{x}(0, t)=u_{x}(l, t)+h u(l, t)=0, h>0$,

$$
u(x, 0)=0, u_{t}(x, 0)=1:
$$

4. $u_{x}(0, t)-h u(0, t)=u_{x}(l, t)+h u(l, t)=0, h>0$,

$$
u(x, 0)=1, u_{t}(x, 0)=0:
$$

h. $u_{x}(0, t)=u_{x}(l, t)+h u(l, t)=0, h>0$,

$$
u(x, 0)=0, u_{t}(x, 0)=1:
$$

d. $u(0, t)=u_{x}(l, t)+h u(l, t)=0, h>0$,

$$
u(x, 0)=0, u_{t}(x, 0)=x:
$$

ๆ. $u_{x}(0, t)=u_{x}(l, t)=0, u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x):$
б. $u_{x}(0, t)-h u(0, t)=u_{x}(l, t)=0, h>0$, $u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x):$

ง. $u_{x}(0, t)=u_{x}(l, t)+h u(l, t)=0, h>0$, $u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x):$

נ. $u_{x}(0, t)-h u(0, t)=u_{x}(l, t)+h u(l, t)=0, h>0$,

$$
u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x):
$$

a. $u_{x}(0, t)-h_{1} u(0, t)=u_{x}(l, t)+h_{2} u(l, t)=0, h_{1}, h_{2}>0$,

$$
u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x):
$$

2. $u(0, t)=u_{x}(l, t)+h u(l, t)=0, h>0$,

$$
u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x):
$$

n. $u(0, t)=u(x, 0)=u_{t}(x, 0)=0, u_{x}(l, t)=H:$

そ. $u(0, t)=u(x, 0)=u_{t}(x, 0)=0, u_{x}(l, t)=A \sin \omega t:$
u. $u(0, t)=u(x, 0)=u_{t}(x, 0)=0, u(l, t)=A \sin \omega t:$
2. $u_{x}(0, t)=0, u_{x}(l, t)=A e^{-t}$,
$u(x, 0)=\frac{\operatorname{Aach} \frac{x}{a}}{\operatorname{sh} \frac{l}{a}}, u_{t}(x, 0)=\frac{-\operatorname{Aach} \frac{x}{a}}{\operatorname{sh} \frac{l}{a}}:$
п. $u_{x}(0, t)-h u(0, t)=\mu(t), u_{x}(l, t)+g u(l, t)=\nu(t), h, g>0$, $u(x, 0)=0, u_{t}(x, 0)=0:$
u. $u_{x}(0, t)=\mu(t), u(l, t)=\nu(t)$, $u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x):$
4. $u(0, t)=u(x, 0)=u_{t}(x, 0)=0, u_{x}(l, t)=A t^{m}, m>-1:$
in $u(0, t)=\mu(t), u(l, t)=\nu(t)$, $u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x):$

$$
u_{t t}=a^{2} u_{x x}-2 \nu u_{t}(\nu>0)
$$

hưquampuxa husum htunljui fuwne fuanhnatinn
w. $u(0, t)=u(l, t)=u_{t}(x, 0)=0$,

$$
u(x, 0)=\left\{\begin{array}{l}
\frac{h}{x_{0}} x, 0<x<x_{0} \\
\frac{h(l-x)}{l-x_{0}}, x_{0} \leq x<l
\end{array}:\right.
$$

ค. $u(0, t)=u_{x}(l, t)=u_{t}(x, 0)=0, u(x, 0)=k x$:
q. $u_{x}(0, t)=u_{x}(l, t)=0, u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x)$:

ก. $u_{x}(0, t)=u_{x}(l, t)+h u(l, t)=0, h>0$,
$u(x, 0)=\varphi(x), u_{t}(\dot{x}, 0)=\psi(x):$
t. $u_{x}(0, t)-h_{1} u(0, t)=u_{x}(l, t)+h_{2} u(l, t)=0, h_{1}, h_{2}>0$,
$u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x):$
q. $u(0, t)=u(l, t)=0, u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x):$
t. $u(0, t)=u(x, 0)=u_{t}(x, 0)=0, u_{x}(l, t)=A \sin \omega t$:
 Cutph hwưun

(huswutin tanujhi umpowaitin)

ш. $u_{t t}=a^{2} u_{x x}+g, 0<x<l, t>0$, $u(x, 0)=u(0, t)=u_{x}(l, t)=0, u_{t}(x, 0)=v_{0}:$
р. $u_{t t}=a^{2} u_{x x}+f(x, t), 0<x<l, t>0$,
$u_{x}(0, t)=u_{x}(l, t)=u(x, 0)=u_{t}(x, 0)=0:$
9. $u_{t t}=a^{2} u_{x x}+f(x, t), 0<x<l, t>0$,
$u(0, t)=u_{x}(l, t)=u(x, 0)=u_{t}(x, 0)=0:$
ㄱ. $u_{t t}=a^{2} u_{x x}+\Phi(x) t, 0<x<l, t>0$,

$$
u(0, t)=u(l, t)=u(x, 0)=u_{t}(x, 0)=0:
$$

t. $u_{t t}=a^{2} u_{x x}+e^{-t} \sin \frac{\pi}{i} x, 0<x<l, t>0$,

$$
u(0, t)=u(l, t)=u(x, 0)=u_{t}(x, 0)=0:
$$

q. $u_{t t}=a^{2} u_{x x}+2 x e^{-t}, 0<x<l, t>0$,

$$
u(0, t)=u(l, t)=u(x, 0)=u_{t}(x, 0)=0:
$$

t. $u_{t t}=a^{2} u_{x x}+\frac{1}{4} \sin t, 0<x<l, t>0$,

$$
u(0, t)=u(l, t)^{x}=u(x, 0)=u_{t}(x, 0)=0:
$$

ฉ. $u_{t t}=4 u_{x x}+2 e^{-t} \cos \frac{x}{2}, 0<x<\pi, t>0$,

$$
u_{x}(0, t)=u(\pi, t)=u(x, 0)=u_{t}(x, 0)=0:
$$

p. $u_{t t}=a^{2} u_{x x}+\omega^{2}(x+u)+g \sin \omega t, 0<x<l, t>0$,

$$
u(0, t)=u_{x}(l, t)=u(x, 0)=u_{t}(x, 0)=0:
$$

d. $u_{t t}=a^{2} u_{x x}+\Phi(x) t^{m}, 0<x<l, t>0, m>-1$,

$$
u(0, t)=u(l, t)=0, u(x, 0)=u_{t}(x, 0):
$$

h. $u_{t t}=a^{2} u_{x x}+\Phi_{0} \cos \omega t, 0<x<l, t>0$, $u(0, t)=u(l, t)=u(x, 0)=u_{t}(x, 0)=0:$
เ. $u_{t t}=a^{2} u_{x x}+\Phi(x) \cos \omega t, 0<x<l, t>0$, $u(0, t)=u(l, t)=u(x, 0)=u_{t}(x, 0)=0:$
fu. $u_{t t}=a^{2} u_{x x}+\Phi(x) \sin \omega t, 0<x<l, t>0$, $u(0, t)=u(l, t)=u(x, 0)=u_{t}(x, 0)=0:$
d. $u_{t t}=a^{2} u_{x x}+\Phi_{0} \sin \omega t, 0<x<l, t>0$, $u(0, t)=u(l, t)=u(x, 0)=u_{t}(x, 0)=0:$
4. $u_{t t}=a^{2} u_{x x}-2 \nu u_{t}+g, 0<x<l, t>0$, $u(0, t)=u(l, t)=u_{t}(x, 0)=0$, $u(x, 0)=\left\{\begin{array}{l}\frac{h}{x_{0}} x, 0<x<x_{0} \\ \frac{h(l-x)}{l-x_{0}}, x_{0}<x<l\end{array}:\right.$
h. $u_{t t}=a^{2} u_{x x}-2 \nu u_{t}+\Phi(x) t, 0<x<l, t>0$, $u(0, t)=u(l, t)=u(x, 0)=u_{t}(x, 0)=0:$
d. $u_{t t}=a^{2} u_{x x}-2 \nu u_{t}+\Phi(x) \sin \omega t, 0<x<l, t>0$,

$$
u(0, t)=u(l, t)=u(x, 0)=u_{t}(x, 0)=0:
$$

(wahwsumutn tqnwjha щmısuafitn)

ๆ. $u_{t t}=a^{2} u_{x x}+f(x), 0<x<l, t>0$, $u(0, t)=\alpha, u(l, t)=\beta, u(x, 0)=u_{t}(x, 0)=0:$
б. $u_{t t}=a^{2} u_{x x}+f(x), 0<x<l, t>0$, $u_{x}(0, t)=\alpha, u_{x}(l, t)=\beta, u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x):$
ง. $u_{t t}=a^{2} u_{x x}+f(x), 0<x<l, t>0$,

$$
\begin{aligned}
& u_{x}(0, t)-h u(0, t)=\alpha, h>0, u(l, t)=\beta \\
& u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x): \\
& \text { J. } u_{t t}=a^{2} u_{x x}+f(x), 0<x<l, t>0 \\
& u_{x}(0, t)=\alpha, u_{x}(l, t)+h u(l, t)=\beta, h>0 \\
& u(x, 0)=u_{t}(x, 0)=0:
\end{aligned}
$$

a. $u_{x x}=u_{t t}+f(x, t), 0<x<l, t>0$,

$$
\begin{aligned}
& u(0, t)=\mu(t), u_{x}(l, t)+h u(l, t)=\nu(t) \\
& u(x, 0)=0, u_{t}(x, 0)=\psi(x), h>0:
\end{aligned}
$$

2. $u_{x x}=u_{t t}+f(x, t), 0<x<l, t>0$,

$$
\begin{aligned}
& u_{x}(0, t)-h u(0, t)=\mu(t), u_{x}(l, t)=\nu(t) \\
& u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x), h>0:
\end{aligned}
$$

n. $u_{t t}=a^{2} u_{x x}+\sin 2 t, 0<x<l, t>0$,

$$
\begin{aligned}
& u_{x}(0, t)=u(x, 0)=0, u_{x}(l, t)=\frac{2}{a} \sin \frac{2 l}{a} \sin 2 t \\
& u_{t}(x, 0)=-2 \cos \frac{2 x}{a}
\end{aligned}
$$

2. $u_{t t}-u_{x x}+2 u_{t}=4 x+8 e^{t} \cos x, 0<x<\frac{\pi}{2}, t>0$,

$$
u_{x}(0, t)=2 t, u\left(\frac{\pi}{2}, t\right)=\pi t, u(x, 0)=\cos x, u_{t}(x, 0)=2 x:
$$

щ. $u_{t t}-3 u_{t}=u_{x x}+2 u_{x}-3 x-2 t, 0<x<\pi, t>0$,
$u(0, t)=0, u(\pi, t)=\pi t, u(x, 0)=e^{-x} \sin x, u_{t}(x, 0)=x:$

w. $u_{t t}=a^{2}\left(u_{x x}+u_{y y}\right), 0<x<l_{1}, 0<y<l_{2}, t>0$, $u(t, 0, y)=u\left(t, l_{1}, y\right)=u(t, x, 0)=u\left(t, x, l_{2}\right)=0$,
$u(x, y, 0)=A x y\left(l_{1}-x\right)\left(l_{2}-y\right), u_{t}(x, y, 0)=0:$
p. $u_{t t}=a^{2}\left(u_{x x}+u_{y y}\right), 0<x<l_{1}, 0<y<l_{2}, t>0$,
$u(t, 0, y)=u\left(t, l_{1}, y\right)=u(t, x, 0)=u\left(t, x, l_{2}\right)=0$, $u(x, y, 0)=0, u_{t}(x, y, 0)=A x y\left(l_{1}-x\right)\left(l_{2}-y\right):$
q. $u_{t t}=a^{2}\left(u_{x x}+u_{y y}\right), 0<x<s, 0<y<p, t>0$,

$$
\begin{aligned}
& u(t, 0, y)=u(t, s, y)=u(t, x, 0)=u(t, x, p)=0 \\
& u(x, y, 0)=\sin \frac{\pi}{s} x \sin \frac{\pi}{p} y, u_{t}(x, y, 0)=0
\end{aligned}
$$

ๆ. $u_{t t}=a^{2}\left(u_{x x}+u_{y y}\right), 0<x<s, 0<y<p, t>0$,

$$
\begin{aligned}
& u(t, 0, y)=u(t, s, y)=u(t, x, 0)=u(t, x, p)=0 \\
& u(x, y, 0)=A x y, u_{t}(x, y, 0)=0
\end{aligned}
$$

t. $u_{t t}=u_{x x}+u_{y y}, 0<x<\pi, 0<y<\pi, t>0$,
$u(t, 0, y)=u(t, \pi, y)=u(t, x, 0)=u(t, x, \pi)=0$, $u(x, y, 0)=3 \sin x \sin 2 y, u_{t}(x, y, 0)=5 \sin 3 x \sin 4 y:$
q. $u_{t t}=a^{2}\left(u_{x x}+u_{y y}\right)+A(x, y) \sin \omega t$,

$$
\begin{aligned}
& 0<x<l_{1}, 0<y<l_{2}, t>0 \\
& u(t, 0, y)=u\left(t, l_{1}, y\right)=u(t, x, 0)=u\left(t, x, l_{2}\right)=0 \\
& u(x, y, 0)=0, u_{t}(x, y, 0)=0
\end{aligned}
$$

t. $u_{t t}=a^{2}\left(u_{x x}+u_{y y}\right)+\frac{e^{-t} x}{\rho} \sin \frac{2 \pi}{p} y$, $0<x<s, 0<y<p, t>0$, $u(t, 0, y)=u(t, s, y)=u(t, x, 0)=u(t, x, p)=0$, $u(x, y, 0)=\dot{u}_{t}(x, y, 0)=0:$
‥ $\frac{\partial^{2} u}{\partial t^{2}}=a^{2}\left(\frac{\partial^{2} u}{\partial r^{2}}+\frac{2}{r} \frac{\partial u}{\partial r}\right), r_{1}<r<r_{2}, t>0$, $\left.\frac{\partial u}{\partial r}\right|_{r=r_{1}}=\varepsilon \omega \cos \omega t,\left.\frac{\partial u}{\partial r}\right|_{r=r_{2}}=0:$
p. $\frac{\partial^{2} u}{\partial t^{2}}=a^{2}\left(\frac{\partial^{2} u}{\partial r^{2}}+\frac{2}{r} \frac{\partial u}{\partial r}\right), r_{1}<r<r_{2}, t>0$,

$$
\left.\frac{\partial u}{\partial r}\right|_{r=r_{1}}=0,\left.\frac{\partial u}{\partial r}\right|_{r=r_{2}}=0
$$

$$
u(r, 0)=0, u_{t}(r, 0)=-\frac{a^{2}}{\rho_{0}} f(r), r_{1}<r<r_{2}
$$

§2. Snıphth tinwamun

$$
\begin{gather*}
u_{t}=a^{2} u_{x x}, \quad 0 \leq x \leq l, \quad t \geq 0 \tag{1}\\
u(0, t)=u(l, t)=0, \quad t \geq 0 \tag{2}\\
u(x, 0)=\varphi(x), \quad 0 \leq x \leq l \tag{3}
\end{gather*}
$$

$$
\begin{equation*}
X^{\prime \prime}+\lambda X=0, \quad X(0)=0, \quad X(l)=0 \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
T^{\prime}+\lambda T=0 \tag{5}
\end{equation*}
$$

 unch tif $\lambda_{n}=\left(\frac{\pi n}{l}\right)^{2}, X_{n}(x)=\sin \frac{\pi n}{l} x, n=1,2, \cdots: \lambda$ husu-
 whahmion t, nıtih

$$
T_{n}(t)=a_{n} \exp \left[-\left(\frac{a \pi n}{l}\right)^{2} t\right], \quad n=1,2 \cdots
$$

 UnG

$$
a_{n} \exp \left[-\left(\frac{a \pi n}{l}\right)^{2} t\right] \sin \frac{\pi n}{l} x
$$

 pn4

$$
u(x, t)=\sum_{n=1}^{\infty} a_{n} \exp \left[-\left(\frac{a \pi n}{l}\right)^{2} t\right] \sin \frac{\pi n}{l} x
$$

$$
a_{n}=\frac{2}{l} \int_{0}^{l} \varphi(x) \sin \frac{\pi n}{l} x d x:
$$

 nnn2чứ a_{n} qnnómuhgatinn ntumpnıú

$$
\sum_{n=1}^{\infty} a_{n} \sin \frac{\pi n}{l} x
$$

 tnwaljniauzuchuluwa zwnptnh untuncpjniahg:
 łuGnhnn

$$
\begin{gather*}
u_{t}=a^{2} u_{x x}+f(x, t), \quad 0 \leq x \leq l, \quad t \geq 0 \tag{6}\\
u(x, 0)=0, \quad 0 \leq x \leq l \tag{7}\\
u(0, t)=u(l, t)=0, \quad t \geq 0 \tag{8}
\end{gather*}
$$

 2 wnph intupny

$$
\begin{equation*}
f(x, t)=\sum_{n=1}^{\infty} f_{n}(t) \sin \frac{\pi n}{l} x \tag{9}
\end{equation*}
$$

nnuntin

$$
\begin{equation*}
f_{n}(t)=\frac{2}{l} \int_{0}^{l} f(x, t) \sin \frac{\pi n}{l} x d x \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} T_{n}(t) \sin \frac{\pi n}{l} x \tag{11}
\end{equation*}
$$

 unzhh htunhumu fuarhhng

$$
\begin{gather*}
T_{n}^{\prime}(t)+\left(\frac{a \pi n}{l}\right)^{2} T_{n}(t)=f_{n}(t) \tag{12}\\
T_{n}(0)=0
\end{gather*}
$$

(12) Juannh intơntúa ntap htionluma intupa

$$
T_{n}(t)=\int_{0}^{t} \exp \left[-\left(\frac{a \pi n}{l}\right)^{2}(t-\tau)\right] f_{n}(\tau) d \tau
$$

 (6)-(8) fuannh ınıónıự

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty}\left(\int_{0}^{t} \exp \left[-\left(\frac{a \pi n}{l}\right)^{2}(t-\tau)\right] f_{n}(\tau) d \tau\right) \sin \frac{\pi n x}{l}: \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
u(x, 0)=\varphi(x), \quad 0 \leq x \leq l \tag{14}
\end{equation*}
$$

 utnh qnıưunn:

$$
\begin{equation*}
u(0, t)=\mu(t), \quad u(l, t)=\nu(t), \quad t \geq 0 \tag{15}
\end{equation*}
$$

nnnCith \$niclughmen

$$
u(x, t)=v(x, t)+\mu(t)+\frac{x}{l}[\nu(t)-\mu(t)]
$$

144. Lntotィ

$$
u_{t}=a^{2} u_{x x}, 0<x<l, t>0
$$

ш. $u(0, t)=u(l, t)=0, u(x, 0)=\varphi(x):$
p. $u(0, t)=u(l, t)=0, u(x, 0)=u_{0}$:
q. $u_{x}(0, t)=u_{x}(l, t)=0, u(x, 0)=\varphi(x)$:

ก. $u_{x}(0, t)-H\left(u(0, t)-u_{1}\right)=0$,
$u_{x}(l, t)+H\left(u(l, t)-u_{2}\right)=0, H>0$,
$u(x, 0)=\varphi(x):$
t. $u(0, t)=u(l, t)=0, u(x, 0)=2 x(l-x)$:

q. $u(0, t)=u_{1}, u(l, t)=u_{2}, u(x, 0)=u_{0}$:
t. $u(0, t)=u_{0}, u_{x}(l, t)=Q_{0}, u(x, 0)=\varphi(x)$:

ก. $u(0, t)=u_{0}, u_{x}(l, t)=0, u(x, 0)=0:$
p. $u_{x}(0, t)=0, u_{x}(l, t)=Q, u(x, 0)=0$:
d. $u(0, t)=0, u(l, t)=A t, u(x, 0)=0$:
h. $u_{x}(0, t)=u_{x}(l, t)=q, u(x, 0)=A x:$
. $u(0, t)=0, u{x}(l, t)=A e^{-t}, u(x, 0)=T$:
¡u. $u(0, t)=0, u(l, t)=A \cos \omega t, u(x, 0)=\varphi(x):$
б. $u(0, t)=0, u_{x}(l, t)=A \cos \omega t, u(x, 0)=\varphi(x)$:
4. $u_{x}(0, t)=A t, u_{x}(l, t)=T, u(x, 0)=0$:
 Gitph hwusu
w. $u_{t}=a^{2} u_{x x}+f(x, t), 0<x<l, t>0$,

$$
u(0, t)=u(l, t)=0, u(x, 0)=\varphi(x):
$$

p. $u_{t}=a^{2} u_{x x}+\Phi(t) \sin \frac{\pi x}{l}, 0<x<l, t>0$, $u(0, t)=u(l, t)=0, u(x, 0)=\varphi(x):$
q. $u_{t}=a^{2} u_{x x}+f(x, t), 0<x<l, t>0$, $u_{x}(0, t)-h u(0, t)=\psi_{1}(t), u_{x}(l, t)+h u(l, t)=\psi_{2}(t)$, $u(x, 0)=\varphi(x):$
7. $u_{t}=a^{2} u_{x x}+f(x), 0<x<l, t>0$,
$u(0, t)=0, u_{x}(l, t)=q, u(x, 0)=\varphi(x):$
146. Lnıotal htinlujul fuwna fuanhnatinn

(hwsumutn tqnujhia mpرswacitn)

ш. $u_{t}=a^{2} u_{x x}-\beta u, 0<x<l, t>0$,
$u(0, t)=u_{x}(l, t)=0, u(x, 0)=\sin \frac{\pi x}{2 l}:$
f. $u_{t}=a^{2} u_{x x}-h\left(u-u_{0}\right), 0<x<l, t>0, h>0, u_{0}>0$, $u(0, t)=u(l, t)=0, u(x, 0)=0:$
9. $u_{t}=a^{2} u_{x x}-h u, 0<x<l, t>0, h>0$ $u_{x}(0, t)-H\left(u(0, t)-u_{1}\right)=0$,

$$
\begin{aligned}
& u_{x}(l, t)+H\left(u(l, t)-u_{2}\right)=0, H>0 \\
& u(x, 0)=\varphi(x):
\end{aligned}
$$

ๆ. $u_{t}=u_{x x}-u, 0<x<l, t>0$,
$u(0, t)=u(l, t)=0, u(x, 0)=1:$
t. $u_{t}=u_{x x}-4 u, 0<x<\pi, t>0$,

$$
u(0, t)=u(\pi, t)=0, u(x, 0)=x^{2}-\pi x:
$$

q. $u_{t}=u_{x x}-u+\sin x, 0<x<\pi, t>0$, $u(0, t)=u(\pi, t)=0, u(x, 0)=0:$
t. $u_{t}=u_{x x}-u, 0<x<\pi, t>0$,
$u(0, t)=u_{x}(\pi, t)=0, u(x, 0)=\sin \frac{x}{2}:$

n. $u_{t}=a^{2} u_{x x}-h\left(u-u_{0}\right), 0<x<l, t>0, h>0, u_{0}>0$, $u(0, t)=u_{1}, u(l, t)=u_{2}, u(x, 0)=\varphi(x):$
p. $u_{t}=a^{2} u_{x x}-h u, 0<x<l, t>0, h>0$, $u_{x}(0, t)=Q_{1}, u_{x}(l, t)=-Q_{2}, u(x, 0)=\varphi(x):$
d. $u_{t}=a^{2} u_{x x}-h\left(u-u_{0}\right),-\pi<x<\pi, t>0, h>0, u_{0}>0$, $u(-\pi, t)=u(\pi, t), u_{x}(-\pi, t)=u_{x}(\pi, t), u(x, 0)=\varphi(x):$
h. $u_{t}=a^{2} u_{x x}-h\left(u-u_{0}\right),-\pi<x<\pi, t>0, h>0, u_{0}>0$, $u_{x}(-\pi, t)=u(\pi, t), u(-\pi, t)=u(\pi, t), u(x, 0)=u_{1}:$
เ. $u_{t}=a^{2} u_{x x}-H u+f(x, t), 0<x<l, t>0, H>0$, $u_{x}(0, t)-h u(0, t)=\psi_{1}(t)$,
$u_{x}(l, t)+h u(l, t)=\psi_{2}(t), h>0$, $u(x, 0)=\varphi(x):$
ł. $u_{t}=u_{x x}-2 u_{x}+x+2 t, 0<x<1, t>0$, $u(0, t)=0, u(1, t)=t, u(x, 0)=e^{x} \sin \pi x:$
d. $u_{t}=u_{x x}+u-x+2 \sin 2 x \cos x, 0<x<\frac{\pi}{2}, t>0$, $u(0, t)=0, u_{x}\left(\frac{\pi}{2}, t\right)=1, u(x, 0)=x:$

147. Lnidtal htinlumi puqưezuch fumng fuanhnitinn

ш. $u_{t}=a^{2}\left(u_{x x}+u_{y y}\right), 0<x<l, 0<y<l, t>0$,
$u(0, y, t)=u(l, y, t)=u(x, 0, t)=u(x, l, t)=0$, $u(x, y, 0)=u_{0}:$
ค. $u_{t}=a^{2}\left(u_{x x}+u_{y y}\right)+f(x, y, t), 0<x<p, 0<y<s, t>0$, $u(0, y, t)=u_{x}(p, y, t)=u(x, 0, t)=u(x, s, t)=0$, $u(x, y, 0)=0:$
q. $u_{t}=a^{2}\left(u_{x x}+u_{y y}\right)+A \sin \frac{3 \pi x}{2 p} \cos \frac{\pi y}{2 s}$,
$0<x<p, 0<y<s, t>0$,
$u(0, y, t)=u_{x}(p, y, t)=u_{y}(x, 0, t)=u(x, s, t)=0$,
$u(x, y, 0)=B \sin \frac{\pi x}{2 p} \cos \frac{3 \pi y}{2 s}:$
ก. $u_{t}=a^{2}\left(u_{x x}+u_{y y}\right)+A \sin \frac{\pi x}{p} \sin \frac{\pi y}{2 s}$,
$0<x<p, 0<y<s, t>0$,
$u(0, y, t)=u(p, y, t)=u(x, 0, t)=u_{y}(x, s, t)=0$, $u(x, y, 0)=0:$
t. $u_{t}=a^{2}\left(u_{x x}+u_{y y}\right), 0<x<p, 0<y<s, t>0$, $u(0, y, t)=u(p, y, t)=u(x, 0, t)=u(x, s, t)=0$, $u(x, y, 0)=\varphi(x, y):$
q. $u_{t}=a^{2}\left(u_{x x}+u_{y y}\right), 0<x<p, 0<y<s, t>0$, $u_{x}(0, y, t)=u(p, y, t)=u(x, 0, t)=u(x, s, t)=0$, $u(x, y, 0)=\varphi(x, y):$
t. $\frac{\partial u}{\partial t}=\frac{a^{2}}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial u}{\partial r}\right)+f(r, t), 0 \leq r<R, t>0$, $|u(r, t)|<\infty, u(R, t)=0, u(r, 0)=0:$
ฉ. $\frac{\partial u}{\partial t}=\frac{a^{2}}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial u}{\partial r}\right)+\frac{Q}{c \rho}, 0 \leq r<R, t>0$,
$|u(0, t)|<\infty, u(R, t)=U, u(r, 0)=T:$
p. $\frac{\partial u}{\partial t}=a^{2}\left(\frac{\partial^{2} u}{\partial r^{2}}+\frac{2}{r} \frac{\partial u}{\partial r}\right), 0 \leq r \leq r_{0}, t>0$,

$$
u_{r}\left(r_{0}, t\right)+h u\left(r_{0}, t\right)=0, u(r, 0)=f(r):
$$

ס. $\frac{\partial u}{\partial t}=a^{2}\left(\frac{\partial^{2} u}{\partial r^{2}}+\frac{2}{r} \frac{\partial u}{\partial r}\right), 0 \leq r \leq r_{0}, t>0$,

$$
u\left(r_{0}, t\right)=0, u(r, 0)=f(r):
$$

h. $\frac{\partial u}{\partial t}=a^{2}\left(\frac{\partial^{2} u}{\partial r^{2}}+\frac{2}{r} \frac{\partial u}{\partial r}\right), 0 \leq r \leq r_{0}, t>0$,

$$
u\left(r_{0}, t\right)=u_{1}, u(r, 0)=u_{0}:
$$

L. $\frac{\partial u}{\partial t}=a^{2}\left(\frac{\partial^{2} u}{\partial r^{2}}+\frac{2}{r} \frac{\partial u}{\partial r}\right), 0 \leq r \leq r_{0}, t>0$,
$\lambda u_{r}\left(r_{0}, t\right)=q, u(r, 0)=u_{0}:$

§3.Bnıphth tinwaimin

$$
\begin{equation*}
u_{x x}+u_{y y}=0 \tag{1}
\end{equation*}
$$

 ршцишшри

$$
\begin{gather*}
u(0, y)=u(l, y)=0 \tag{2}\\
u(x, 0)=f_{1}(x), u(x, b)=f_{2}(x) \tag{3}
\end{gather*}
$$

 Gumap

$$
\begin{equation*}
\frac{X^{\prime \prime}(x)}{X(x)}+\frac{Y^{\prime \prime}(y)}{Y(y)}=0: \tag{4}
\end{equation*}
$$

$$
\frac{X^{\prime \prime}(x)}{X(x)}=-\lambda, \frac{Y^{\prime \prime}(y)}{Y(y)}=\lambda
$$

$$
\begin{align*}
& X^{\prime \prime}(x)+\lambda X(x)=0 \tag{5}\\
& Y^{\prime \prime}(y)-\lambda Y(y)=0 \tag{6}
\end{align*}
$$

(2) tanujha uqusumaitinhg ffuntu $t, n n$

$$
\begin{equation*}
X(0)=X(l)=0: \tag{7}
\end{equation*}
$$

rasugtu qhunt in (5), (7) fuannh utithuliwa wnotpating

$$
\lambda_{n}=\left(\frac{\pi n}{l}\right)^{2}, n=1,2, \cdots
$$

$$
X_{n}(x)=\sin \frac{\pi n}{l} x, \quad n=1,2, \cdots:
$$

 LnLơntúa nıleh

$$
Y_{n}(y)=C_{n} e^{\pi n y / l}+D_{n} e^{-\pi n y / l}
$$

intupn:

$$
X_{n}(x) Y_{n}(y)=\left(C_{n} e^{\pi n y / l}+D_{n} e^{-\pi n y / l}\right) \sin \frac{\pi n}{l} x
$$

$$
\begin{equation*}
u(x, y)=\sum_{n=1}^{\infty}\left(C_{n} e^{\pi n y / l}+D_{n} e^{-\pi n y / l}\right) \sin \frac{\pi n}{l} x \tag{8}
\end{equation*}
$$

$$
f_{1}(x)=\sum_{n=1}^{\infty} C_{n} \sin \frac{\pi n}{l} x
$$

L

$$
f_{2}(x)=\sum_{n=1}^{\infty}\left(C_{n} e^{\pi n b / l}+D_{n} e^{-\pi n b / l}\right) \sin \frac{\pi n}{l} x:
$$

Unwghahg untatamap

$$
C_{n}=\frac{2}{l} \int_{0}^{l} f_{1}(x) \sin \frac{\pi n}{l} x d x
$$

tninnnnhg'

$$
C_{n} e^{\pi n b / l}+D_{n} e^{-\pi n b / l}=\frac{2}{l} \int_{0}^{l} f_{2}(x) \sin \frac{\pi n}{l} x d x:
$$

 \$ntalghum, nno purluinumh

$$
\begin{equation*}
\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial u}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} u}{\partial \varphi^{2}}=0 \tag{13}
\end{equation*}
$$

ш. $u(a, \varphi)=f(\varphi)$:
р. $u(a, \varphi)=A \sin \varphi$:
q. $u(a, \varphi)=A \sin ^{3} \varphi+B$:

ท. $u(a, \varphi)=\left\{\begin{array}{l}A \sin \varphi, 0<\varphi<\pi \\ \frac{1}{3} A \sin ^{3} \varphi, \pi<\varphi<2 \pi\end{array}\right.$
t. $a=1, u(a, \varphi)=\cos ^{2} \varphi$:
q. $a=1, u(a, \varphi)=\sin ^{3} \varphi$:
t. $a=1, u(a, \varphi)=\cos ^{4} \varphi$:
д. $a=1, u(a, \varphi)=\sin ^{6} \varphi+\cos ^{6} \varphi$:

ค. $u(a, \varphi)=\varphi \sin \varphi$:
d. $u_{\rho}(a, \varphi)=f(\varphi)$:
h. $u_{\rho}(a, \varphi)=A \cos \varphi$:
l. $u_{\rho}(a, \varphi)=A \cos 2 \varphi$:

น. $u_{\rho}(a, \varphi)=\sin ^{3} \varphi$:
б $u_{\rho}(a, \varphi)-h u(a, \varphi)=-f(\varphi):$
4. $u_{\rho}(a, \varphi)+h u(a, \varphi)=T+Q \sin \varphi+U \cos 3 \varphi$:

ш. $u(a, \varphi)=f(\varphi)$:
f. $u(a, \varphi)=A \sin \varphi$:
q. $u(a, \varphi)=A \sin ^{3} \varphi+B$:

ๆ. $u(a, \varphi)=\left\{\begin{array}{l}A \sin \varphi, 0<\varphi<\pi \\ \frac{1}{3} A \sin ^{3} \varphi, \pi<\varphi<2 \pi\end{array}\right.$
t. $u(a, \varphi)=T \sin \frac{\varphi}{2}$:
q. $u_{\rho}(a, \varphi)=f(\varphi):$
t. $u_{\rho}(a, \varphi)=\frac{1}{2}+\varphi \sin 2 \varphi$:
n. $u_{\rho}(a, \varphi)-h u(a, \varphi)=f(\varphi)$:
p. $u(a, \varphi)=U \varphi+\varphi \cos \varphi$:
150. quncita $a \leq \rho \leq b, 0 \leq \varphi \leq 2 \pi$ onwliniơ mjamhuh

w. $u(a, \varphi)=f(\varphi), u(b, \varphi)=F(\varphi)$:
p. $u(a, \varphi)=0, u(b, \varphi)=A \cos \varphi$:
q. $u(a, \varphi)=A, u(b, \varphi)=B \sin 2 \varphi$:
п. $u_{\rho}(a, \varphi)=q \cos \varphi, u(b, \varphi)=Q+T \sin 2 \varphi$:
t. $u(a, \varphi)=T+U \cos \varphi, u_{\rho}(b, \varphi)-h u(b, \varphi)=0$:
q. $\left.a=1, b=2, u(a, \varphi)=u_{1}, u(b, \varphi)\right)=u_{2}$:
t. $\left.a=1, b=2, u(a, \varphi)=1+\cos ^{2} \varphi, u(b, \varphi)\right)=\sin ^{2} \varphi$:
151. quntiti $\rho \leq a, 0 \leq \varphi \leq \alpha$ 2nquilujhia utlunnnnisu wjauh

w. $u(a, \varphi)=f(\varphi), u(\rho, 0)=u(\rho, \alpha)=0$:
f. $u(a, \varphi)=A \varphi, u(\rho, 0)=u(\rho, \alpha)=0$:
q. $u(a, \varphi)=f(\varphi), u_{\varphi}(\rho, 0)=u(\rho, \alpha)=0$:

ๆ. $u(a, \varphi)=U \varphi, u_{\varphi}(\rho, 0)=u_{\varphi}(\rho, \alpha)=0:$
t. $u_{\rho}(a, \varphi)=Q, u(\rho, 0)=u(\rho, \alpha)=0$:
q. $u_{\rho}(a, \varphi)+\gamma u(\rho, \varphi)=0$,
$u(\rho, 0)=u_{\varphi}(\rho, \alpha)+h u(\rho, \alpha)=0, h>0$:
152. qunciti $a \leq \rho \leq b, 0 \leq \varphi \leq \alpha$ onuluwdic utiqunnnnıu
 suman L

$$
\begin{aligned}
& u(a, \varphi)=f(\varphi), u(b, \varphi)=F(\varphi) \\
& u(\rho, 0)=u(\rho, \alpha)=0
\end{aligned}
$$

153. qunciti $0 \leq x \leq a, 0 \leq y \leq b$ ninnwalymai utg mjamhuh

ш. $u(x, 0)=f(x), u(x, b)=F(x)$,
$u(0, y)=\varphi(y), u(a, y)=\Phi(y):$
ค. $u(x, 0)=0, u(x, b)=F(x)$,
$u(0, y)=u_{x}(a, y)=0:$
q. $u(x, 0)=A, u(x, b)=B x$,
$u_{x}(0, y)=u_{x}(a, y)=0:$
ๆ $u(x, 0)=0, u_{y}(x, b)=B x$,
$u_{x}(0, y)=u(a, y)=0:$
t. $u_{y}(x, 0)=T \sin \frac{\pi x}{2 a} \cdot u(x, b)=0$,
$u(0, y)=U, u_{x}(a, y)=0:$
q. $u(x, 0)=0, u(x, b)=U$,
$u(0, y)=0, u_{x}(a, y)=q:$
t. $u(x, 0)=0, u(x, b)=\frac{s T x}{a}$,
$u(0, y)=0, u(a, y)=T{ }^{a}:$
‥ $u(x, 0)=B \sin \frac{\pi x}{a}, u(x, b)=0$,
$u(0, y)=A \sin \frac{\pi y}{b}, u(a, y)=0:$
p. $u(x, 0)=f(x), u(x, b)=\varphi(x)$,

$$
u_{x}(0, y)=\psi(y), u_{x}(a, y)=\kappa(y):
$$

d. $u(x, 0)=0, u(x, b)=V_{0}$,
$u(0, y)=V, u(a, y)=0:$
154. Quncita $0 \leq x \leq \infty, 0 \leq y \leq l$ ihnumztienntu mjamhuh
 tqnujha щumsumaitinha
w. $u(x, 0)=u_{y}(x, l)=0$,

$$
u(0, y)=f(y), u(\infty, y)=0:
$$

p. $u_{y}(x, 0)=u_{y}(x, l)+h u(x, l)=0, h>0$, $u(0, y)=f(y), u(\infty, y)=0:$
q. $u(x, 0)=u(x, l)=0$, $u(0, y)=y(l-y), u(\infty, y)=0:$
ๆ. $u_{y}(x, 0)-h u(x, 0)=0, u(x, l)=0, h>0$, $u(0, y)=l-y, u(\infty, y)=0:$

9 L กr tu VI
 rustaruluarl 2৮ЧUథחhunra3ntlutr

§1.Lwu्याшuh dLuminfuntpjnicin

Uwhuwinis.

$$
F(z)=\int_{a}^{b} K(z, t) f(t) d t
$$

 funipjula unnha:

 utinh fuquaci lituntinh.

$$
\begin{equation*}
F(p)=\int_{0}^{\infty} e^{-p t} f(t) d t \quad(F(p)=L f(t)) \tag{1}
\end{equation*}
$$

 shumhnfuntpرneq:
 tá htunlumu hnưaulua hwinlnipjniacting.

1. $L\left[a_{1} f_{1}(t)+a_{2} f_{2}(t)\right]=a_{1} L\left[f_{1}(t)\right]+a_{2} L\left[f_{2}(t)\right]$,
2. $L\left[\int_{0}^{t} f_{1}(t-\tau) f_{2}(\tau) d \tau\right]=L\left[f_{1}(t)\right] L\left[f_{2}(t)\right]$,
3. $L\left[\int_{0}^{t} f(\tau) d \tau\right]=\frac{F(p)}{p}$,
4. $L\left[f^{(n)}(t)\right]=p^{n} F(p)-p^{n-1} f_{0}-\cdots-p f_{0}^{n-2}-f_{0}^{n-1}$,

$$
\text { nnuntin } f_{0}^{(k)}=\lim _{t \rightarrow+0} \frac{d^{k} f(t)}{d t^{k}}
$$

5. $L[f(t-b)]=e^{-b p} L[f(t)]$,
6. $L[f(a t)]=\frac{1}{a} F\left(\frac{p}{a}\right)$, tpta $a>0$,
7. $L\left[e^{-\lambda t} f(t)\right]=F(p+\lambda)$,
8. $L\left[t^{n} f(t)\right]=(-1)^{n} F^{(n)}(p)$,

$$
\begin{array}{cc}
L f(t) & f(t) \\
\frac{1}{p^{2}+a^{2}} & \frac{\sin a t}{a} \\
\frac{p}{\left(p^{2}+a^{2}\right)^{2}} & \frac{t \sin a t}{2 a} \\
\frac{p}{p^{2}+a^{2}} & \cos a t \\
e^{-z \sqrt{p}} & \frac{z}{2 \sqrt{\pi} t^{3 / 2}} e^{--z^{2} / 4 t}
\end{array}
$$

155. $u_{y}=u_{x x}+a^{2} u+f(x), 0<x<\infty, 0<y<\infty$, $u(0, y)=u_{x}(0, y)=0.0<y<\infty:$
156. $u_{y}=u_{x x}+u+B \cos x, 0<x<\infty, 0<y<\infty$:
$u(0, y)=A e^{-3 y}, u_{x}(0, y)=0,0<y<\infty:$
157. $u_{t}=a^{2} u_{x x}, 0<x<l, 0<t$,
$u(+0, t)=\delta(t), u(l-0, t)=0,0<t$,
$u(x,+0)=0,0<x<l:$
158. $u_{t}=a^{2} u_{x x}, 0<x<\infty, 0<t$,
$u(+0, t)=\delta(t), u(\infty-0, t)=0,0<t$,
$u(x,+0)=0,0<x<\infty:$
159. $u_{t}=a^{2} u_{x x}, 0<x<\infty, 0<t$,
$u(+0, t)=\mu(t), u(\infty-0, t)=0,0<t$,
$u(x,+0)=0,0<x<\infty:$
160. $u_{t t}=a^{2} u_{x x}, 0<x<\infty, 0<t$,
$u(0, t)=E(t), 0<t$,
$u(x, 0)=u_{t}(x, 0)=0,0<x<\infty$,
$u(x, t)$ \$nıalughwia umhsumamenuly t , tnf $x \rightarrow \infty$:
161. $u_{x x}=a^{2} u_{t t}+2 b u_{t}+c^{2} u, 0<x<\infty, 0<t$,
$u(0, t)=E(t), 0<t$,
$u(x, 0)=u_{t}(x, 0)=0,0<x<\infty$,

162. $u_{t t}=a^{2} u_{x x}, 0<x<\infty, 0<t$,
$u_{x}(0, t)-h u(0, t)=\varphi(t), u(\infty, t)=0,0<t$, $u(x, 0)=u_{t}(x, 0)=0,0<x<\infty:$

§2.Snıphth ôluwhnfunıpjnılin

 funtajniG uwhúwaynus t nnubtu'

$$
\begin{equation*}
F(p)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i p t} f(t) d t \tag{1}
\end{equation*}
$$

 nhth dumennfuncpjwi hulqunumòn unnuncut

$$
\begin{equation*}
f(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i p t} F(p) d p \tag{2}
\end{equation*}
$$

purimounct:
 Guma htundum untuptnn

$$
\begin{aligned}
& F(p)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \cos p t f(t) d t \\
& f(t)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \cos p t F(p) d p
\end{aligned}
$$

$$
\begin{aligned}
& F(p)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \sin p t f(t) d t \\
& f(t)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \sin p t F(p) d p
\end{aligned}
$$

$$
\begin{aligned}
& F(\xi, \eta)=\frac{1}{\sqrt{2 \pi}^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-i(\xi x+\eta y)} f(x, y) d x d y \\
& f(x, y)=\frac{1}{\sqrt{2 \pi}^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(\xi x+\eta y)} F(\xi, \eta) d \xi d \eta:
\end{aligned}
$$

$$
F_{n}(p)=\int_{0}^{\infty} t J_{n}(p t) f(t) d t
$$

$$
f(t)=\int_{0}^{\infty} p J_{n}(p t) F_{n}(p) d p
$$

pmamorlunt:

163. $u_{t t}=a^{2} u_{x x},-\infty<x<\infty, t>0$,
$u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x),-\infty<x<\infty:$
164. $u_{t t}=a^{2} u_{x x}+f(x, t),-\infty<x<\infty, t>0$,
$u(x, 0)=u_{t}(x, 0)=0,-\infty<x<\infty:$
165. $u_{t}=a^{2} u_{x x},-\infty<x<\infty, t>0$, $u(x, 0)=\varphi(x),-\infty<x<\infty$:
166. $u_{t}=a^{2} u_{x x}+f(x, t),-\infty<x<\infty, t>0$, $u(x, 0)=0,-\infty<x<\infty:$
167. $u_{t}=a^{2} u_{x x}, 0<x<\infty, t>0$,
$u(x, 0)=0,0<x<\infty, u(0, t)=\mu(t), t>0:$
168. $u_{t}=a^{2} u_{x x}, 0<x<\infty, t>0$,
$u(x, 0)=0,0<x<\infty, u_{x}(0, t)=\nu(t), t>0:$
169. $u_{t}=a^{2} u_{x x}+f(x, t), 0<x<\infty, t>0$,
$u(x, 0)=0,0<x<\infty, u(0, t)=0, t>0:$
170. $u_{t \iota}=a^{2} u_{x x}, 0<x<\infty, t>0$,
$u(x, 0)=\varphi(x), u_{\iota}(x, 0)=\psi(x), 0<x<\infty$.
$u(0, t)=0, t>0:$
171. $u_{t t}=a^{2} u_{x x}, 0<x<\infty, t>0$,
$u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x), 0<x<\infty$,
$u_{x}(0, t)=0, t>0:$
172. $u_{t t}=a^{2} u_{x x}, 0<x<\infty, t>0$,
$u(x, 0)=u_{t}(x, 0)=0,0<x<\infty$,
$u(0, t)=\mu(t), t>0:$
173. $u_{t t}=a^{2} u_{x x}, 0<x<\infty, t>0$,
$u(x, 0)=u_{t}(x, 0)=0,0<x<\infty$,
$u_{x}(0, t)=\nu(t), t>0:$
174. $u_{t t}=a^{2} u_{x x}+f(x, t), 0<x<\infty, t>0$,
$u(x, 0)=u_{t}(x, 0)=0,0<x<\infty$,
$u(0, t)=0, t>0:$
175. $u_{t t}=a^{2} u_{x x}+f(x, t), 0<x<\infty, t>0$,
$u(x, 0)=u_{t}(x, 0)=0,0<x<\infty$,
$u_{x}(0, t)=0, t>0:$
176. $u_{t}=a^{2} u_{x x}, 0<x<\infty, t>0$,
$u(x, 0)=f(x), 0<x<\infty$,
$u(0, t)=0, t>0:$
177. $u_{t}=a^{2} u_{x x}, 0<x<\infty, t>0$,
$u(x, 0)=f(x), 0<x<\infty$,
$u_{x}(0, t)=0, t>0:$
178. $u_{t}=a^{2} u_{x x}+f(x, t), 0<x<\infty, t>0$,
$u(x, 0)=0,0<x<\infty$,
$u_{x}(0, t)=0, t>0:$
179. $u_{t}=a^{2}\left(u_{x x}+u_{y y}\right),-\infty<x, y<\infty, t>0$, $u(x, y, 0)=\varphi(x, y),-\infty<x, y<\infty:$
180. $u_{t}=a^{2}\left(u_{x x}+u_{y y}\right)+f(x, y, t),-\infty<x, y<\infty, t>0$, $u(x, y, 0)=0,-\infty<x, y<\infty:$
181. $u_{t}=a^{2}\left(u_{x x}+u_{y y}\right),-\infty<x<\infty, 0<y<\infty, t>0$, $u(x, y, 0)=f(x, y),-\infty<x<\infty, 0<y<\infty$,
$u(x, 0, t)=0,-\infty<x<\infty, t>0$:
182. $u_{t}=a^{2}\left(u_{x x}+u_{y y}\right),-\infty<x<\infty, 0<y<\infty, t>0$.
$u(x, y, 0)=0,-\infty<x<\infty, 0<y<\infty$,
$u(x, 0, t)=f(x, t),-\infty<x<\infty, t>0$:
183. $u_{t}=a^{2}\left(u_{x x}+u_{y y}\right),-\infty<x<\infty, 0<y<\infty, t>0$, $u(x, y, 0)=f(x, y),-\infty<x<\infty, 0<y<\infty$,
$u_{y}(x, 0, t)=0,-\infty<x<\infty, t>0$:
 jwưp
184. $\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{\partial^{2} u}{\partial t^{2}}=0,0 \leq r<\infty, t>0$,

$$
u(r, 0)=f(r), u(r, \infty)=0,0 \leq r<\infty
$$

$$
u(\infty, t)=u_{r}(\infty, t)=0, t>0
$$

$$
u(r, 0)=\left\{\begin{array}{l}
T, r<R \\
0, r>R
\end{array}\right.
$$

185. $b^{2}\left(\frac{1}{r} \frac{\partial}{\partial r}+\frac{\partial^{2}}{\partial r^{2}}\right)^{2} u+\frac{\partial^{2} u}{\partial t^{2}}=0,0 \leq r<\infty, t>0$,
$u(r, 0)=f(r), u_{t}(r, 0)=0,0 \leq r<\infty:$

$$
f(r)=A e^{-\frac{r^{2}}{a^{2}}}, 0 \leq r<\infty
$$

186. $\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{\partial^{2} u}{\partial t^{2}}=0,0 \leq r<\infty, t>0$,
$u_{t}(r, 0)=\left\{\begin{array}{l}-q / k+h u(r, 0), 0 \leq r<R \\ h u(r, 0), R \leq r<\infty\end{array}\right.$,
$u(r, \infty)=0,0 \leq r<\infty$,
$u(\infty, t)=u_{r}(\infty, t)=0, t>0:$

9 L nt tu VII

zusnru sntu43hultr

§1.9_wamjhi \$nılughwatin

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-m^{2}\right) u=0,(-\infty<x<\infty) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
J_{m}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{\Gamma(k+m+1) \Gamma(k+1)}\left(\frac{x}{2}\right)^{2 k+m} \tag{2}
\end{equation*}
$$

 \$nialghma maluants tía mimgha utnh m-nn lumah ftutich PniGughu:

$$
\begin{gathered}
J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1}=\sqrt{\frac{2}{\pi x}} \sin x \\
J_{-1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} x^{2 k}=\sqrt{\frac{2}{\pi x}} \cos x:
\end{gathered}
$$

 malumituta, hul

$$
y(x)=C_{1} J_{m}(x)+C_{2} J_{-m}(x)
$$

 шщை

$$
J_{-m}(x)=(-1)^{m} J_{m}(x):
$$

 unıư

$$
\begin{equation*}
Y_{m}(x)=\lim _{n \rightarrow m} \frac{J_{n}(x) \cos \pi n-J_{-n}(x)}{\sin \pi n} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
Y_{m}(x)=\frac{J_{m}(x) \cos \pi m-J-m(x)}{\sin \pi m}: \tag{4}
\end{equation*}
$$

$$
y(x)=C_{1} J_{m}(x)+C_{2} Y_{m}(x):
$$

m. Ept μ_{1} L $\mu_{2}-\mathrm{n}$ hwanhumanıu tía

$$
\begin{equation*}
\alpha J_{m}(\mu)+\beta \mu J_{m}^{\prime}(\mu)=0, \alpha \geq 0, \beta \geq 0, \alpha+\beta>0 \tag{5}
\end{equation*}
$$

$$
\begin{gathered}
\int_{0}^{1} x J_{m}\left(\mu_{1} x\right) J_{m}\left(\mu_{2} x\right) d x=0 . \mu_{1} \neq \mu_{2} \\
\int_{0}^{1} x J_{m}^{2}\left(\mu_{1} x\right) d x=\frac{1}{2}\left(J_{m}^{\prime}\left(\mu_{1}\right)\right)^{2}+\frac{1}{2}\left(1-\frac{m^{2}}{\mu_{1}^{2}}\right) J_{m}^{2}\left(\mu_{1}\right):
\end{gathered}
$$

$$
J_{m}^{\prime}(x)=J_{m-1}(x)-\frac{m}{x} J_{n}(x)
$$

$$
\begin{aligned}
J_{m}^{\prime}(x) & =-J_{m+1}(x)+\frac{m}{x} J_{m}(x) \\
J_{m+1}(x) & =\frac{2 m}{x} J_{m}(x)+J_{m-1}(x)=0:
\end{aligned}
$$

9. tpt $m=0,1,2, \cdots$, шици

$$
\begin{gathered}
J_{m+1 / 2}(x)=(-1)^{m} \sqrt{\frac{2}{\pi}} x^{m+1 / 2}\left(\frac{1}{x} \frac{d}{d x}\right)^{m} \frac{\sin x}{x} \\
J_{-m-1 / 2}(x)=\sqrt{\frac{2}{\pi}} x^{m+1 / 2}\left(\frac{1}{x} \frac{d}{d x}\right)^{m} \frac{\cos x}{x}:
\end{gathered}
$$

t. Stanh nıah htinlimi wuhumunnunhly pwamolun

$$
J_{m}(x)=\sqrt{\frac{2}{\pi x}} \cos \left(x-\frac{\pi}{2} m-\frac{\pi}{4}\right)+O\left(x^{-3 / 2}\right), x \rightarrow \infty
$$

 otuln (utc x-nh huoum)

$$
\mu_{k}^{(m)} \approx \frac{3 \pi}{4}+\frac{\pi}{2} m+\pi k:
$$

$$
\begin{equation*}
f(x)=\sum_{k=1}^{\infty} a_{k} J_{m}\left(\mu_{k} \frac{x}{l}\right), \quad m>-1 \tag{6}
\end{equation*}
$$

2wngh intupnu, nnuntin

$$
\begin{equation*}
a_{k}=\frac{2}{l^{2} J_{m+1}^{2}\left(\mu_{k}\right)} \int_{0}^{l} x f(x) J_{m}\left(\mu_{k} \frac{x}{l}\right) d x \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
a_{k}=\frac{2}{l^{2}\left(1+\frac{\alpha^{2}-\beta^{2} m^{2}}{\beta^{2} \mu_{k}^{2}}\right) J_{m}^{2}\left(\mu_{k}\right)} \int_{0}^{l} x f(x) J_{m}\left(\mu_{k} \frac{x}{l}\right) d x \tag{8}
\end{equation*}
$$

 htinnjuminu

$$
\begin{equation*}
f(x)=a_{0} x^{m}+\sum_{k=1}^{\infty} a_{k} J_{m}\left(\mu_{k} \frac{x}{l}\right),(m>-1) \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
a_{0}=\frac{2(m+1)}{l^{2(m+1)}} \int_{0}^{l} x^{m+1} f(x) d x \tag{10}
\end{equation*}
$$

 Ftutlh 2wnp:
 Gumper \$nialighwating

$$
\begin{aligned}
H_{m}^{(1)}(x) & =J_{m}(x)+i Y_{m}(x) \\
H_{m}^{(2)}(x) & =J_{m}(x)-i Y_{m}(x)
\end{aligned}
$$

$$
y(x)=C_{1} H_{n}^{(1)}(x)+C_{2} H_{n}^{(2)}(x)
$$

untupnu, hul oqumanndotinu

$$
I_{m}(x)=i^{-m} J_{m}(i x)
$$

4tñ wnqnustGinny wnughG utnh Ftutih \$nıOughuatnn

$$
K_{m}(x)=\frac{\pi i}{2} e^{\pi m i / 2} H_{m}^{(1)}(i x)
$$

 nh)

$$
x^{2} y^{\prime \prime}+x y^{\prime}-\left(x^{2}+m^{2}\right) u=0,(-\infty<x<\infty)
$$

$$
y(x)=C_{1} I_{m}(x)+C_{2} I_{-m}(x)
$$

untupny, tnp m-n wupnne t L

$$
y(x)=C_{1} I_{m}(x)+C_{2} K_{m}(x)
$$

untupnu, tnf m-n दninnnulumjhes t:

$$
\begin{gathered}
\int_{0}^{x} x J_{0}(x) d x=x J_{1}(x) \\
\int_{0}^{x} x^{3} \cdot J_{0}(x) d x=2 x^{2} J_{0}(x)+\left(x^{3}-4 x\right) J_{1}(x):
\end{gathered}
$$

Lnidtul htionlumi kuinhnciting

187. $u_{t t}=a^{2}\left(x u_{x}\right)_{x}, 0<x<l, t>0$,

$$
u(l, t)=0, u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x):
$$

188. $u_{t t}=a^{2}\left(x u_{x}\right)_{x}+f(x, t), 0<x<l, t>0$,

$$
u(l, t)=0, u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x):
$$

189. $u_{t t}=a^{2}\left(x u_{x}\right)_{x}+A \sin \omega t, 0<x<l, t>0$,

$$
u(l, t)=u(x, 0)=u_{t}(x, 0)=0
$$

190. $u_{t t}=a^{2}\left(x u_{x}\right)_{x}+\omega^{2} u, 0<x<l, t>0$.

$$
u(l, t)=0, u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x):
$$

191. $u_{t t}=\left(u_{r r}+\frac{1}{r} u_{r}\right), 0<r<R, t>0$,

$$
u(R, t)=0, u(r, 0)=A J_{0}\left(\frac{\mu_{k} r}{R}\right), u_{t}(r, 0)=0
$$

192. $u_{t t}=\left(u_{r r}+\frac{1}{r} u_{r}\right), 0<r<R, t>0$,

$$
u(R, t)=0, u(r, 0)=0, u_{t}(r, 0)=r:
$$

193. $u_{t t}=a^{2}\left(u_{r r}+\frac{1}{r} u_{r}\right), 0<r<R, t>0$,

$$
u_{r}(R, t)=0, u(r, 0)=\varphi(r), u_{t}(r, 0)=\psi(r):
$$

194. $u_{t t}=a^{2}\left(u_{r r}+\frac{1}{r} u_{r}\right), 0<r<R, t>0$,

$$
u(R, t)=0, u(r, 0)=A\left(1-\frac{r^{2}}{R^{2}}\right), u_{t}(r, 0)=0:
$$

 t: ©ounuliph tann unzun wunngumo t:
196. $u_{t t}=a^{2}\left(u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\varphi \varphi}\right), 0<r<R, t>0$,

$$
u(R, \varphi, t)=0, u(r, \varphi, 0)=f(r, \varphi), u_{t}(r, \varphi, 0)=F(r, \varphi):
$$

197. $u_{t t}=a^{2}\left(\frac{1}{r^{2}}\left(r^{2} u_{r}\right)_{r}-\frac{2 u}{r^{2}}\right), 0<r<R, t>0$,
$u_{r}(R, t)=0, u(r, 0)=v r, u_{t}(r, 0)=0$,
198. $u_{t t}=a^{2}\left(u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\varphi \varphi}\right)$,
$0<r<R, 0<\varphi<2 \pi, t>0$,
$u_{r}(R, \varphi, t)=0, u(r, \varphi, 0)=v_{0} r \cos \varphi, u_{t}(r, \varphi, 0)=0:$

 пtugtnn
w. qiwah sulutplinispn otprumstunlumglwd t,

q. q!w[h

$$
\begin{gathered}
\text { 205. } u_{t}=a^{2}\left(u_{r r}+\frac{1}{r} u_{r}\right), r_{1}<r<r_{2}, t>0, \\
u\left(r_{1}, t\right)=u(r, 0)=0, u_{r}\left(r_{2}, t\right)=\frac{q_{0}}{\lambda}:
\end{gathered}
$$

206. 9natil husumutn 4 リtnquinn $(0<r<R, 0<\varphi<2 \pi, 0<$

$$
\begin{aligned}
& \text { 207. } \frac{1}{r}\left(r u_{r}\right)_{r}+u_{z z}=0,0<r<R, 0<z<l, \\
& u(R, z)=T, u(r, 0)=u(r, l)=0: \\
& \text { 208. } \frac{1}{r}\left(r u_{r}\right)_{r}+\frac{1}{r^{2}} u_{\varphi \varphi}+u_{z z}=0, \\
& 0<r<R, 0<z<l, 0<\varphi<2 \pi, \\
& u(R, \varphi, z)=0, u(r, \varphi, 0)=f(r, \varphi), u(r, \varphi, l)=F(r, \varphi):
\end{aligned}
$$

 iñ $A z\left(1-\frac{z}{l}\right)$:
§2. U\$tnht L quinujhi \$ntalghmaitn, Ltctuannt puquumanuuatin

 $r<\infty, 0 \leq \varphi<2 \pi)$ pltinumha unnnnhcuencitnnis: $u_{\ell}(x)=r^{\ell} Y_{\ell}(\varphi)$
 tup

$$
Y_{\ell}^{\prime \prime}+\ell^{2} Y_{\ell}=0
$$

$$
\begin{gathered}
Y_{\ell}(\varphi)=a_{\ell} \cos \ell \varphi+b_{\ell} \sin \ell \varphi, l=0,1, \cdots, \\
u_{\ell}(x)=r^{\ell}\left(a_{l} \cos \ell \varphi+b_{\ell} \sin \ell \varphi\right):
\end{gathered}
$$

 $(n=3)$: w numsun t hnwluwfimgital $(r, \theta, \varphi)(0 \leq r \leq \infty, 0 \leq$

 tuig

$$
\begin{equation*}
\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial Y_{\ell}}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} Y_{\ell}}{\partial \varphi^{2}}+\ell(\ell+1) Y_{\ell}=0: \tag{1}
\end{equation*}
$$

(1) hwưmumpưwa Stipnrte: Y_{ℓ}-n thauntucip

$$
\begin{equation*}
Y_{\ell}(\theta, \varphi)=P(\cos \theta) \Phi(\varphi) \tag{2}
\end{equation*}
$$

 const)

$$
\begin{equation*}
\Phi^{\prime \prime}+\nu \Phi=0 \tag{3}
\end{equation*}
$$

$$
\begin{align*}
\frac{1}{\sin \theta} \frac{d}{d \theta}(\sin \theta & \left.\frac{d P(\cos \theta)}{d \theta}\right)+ \\
& +\left[\ell(\ell+1)-\frac{\nu}{\sin ^{2} \theta}\right] P(\cos \theta)=0 \tag{4}
\end{align*}
$$

 nnıúa nıah unmرa $\nu=m^{2}$ rttupnıu $(m=0,1, \cdots) \mathrm{L}$

$$
\Phi(\varphi)=e^{i m \varphi}:
$$

$$
\begin{equation*}
-\left(\left(1-\mu^{2}\right) P^{\prime}\right)^{\prime}+\frac{m^{2}}{1-\mu^{2}} P=\ell(\ell+1) P \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\left(\left(1-\mu^{2}\right) P^{\prime}\right)^{\prime}+\ell(\ell+1) P: \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
P_{\ell}(\mu)=\frac{1}{2^{\ell} \ell!} \frac{d^{\ell}}{d \mu^{\ell}}\left(\mu^{2}-1\right)^{\ell}, \ell=0,1, \cdots \tag{7}
\end{equation*}
$$

$$
\int_{-1}^{1} P_{\ell}^{2}(\mu) d \mu=\frac{2}{2 \ell+1}:
$$

 untu t zunph puen Ltacuannh puquiwanusatinh

$$
f(\mu)=\sum_{\ell=0}^{\infty} \frac{2 \ell+1}{2}\left(f, P_{\ell}\right) P_{\ell}(\mu):
$$

$$
P_{0}(\mu)=1, P_{1}(\mu)=\mu, P_{2}(\mu)=\frac{3}{2} \mu^{2}-\frac{1}{2}, P_{3}(\mu)=\frac{5}{2} \mu^{3}-\frac{3}{2} \mu:
$$

 Gitng
ш. $P_{\ell}(-x)=(-1)^{\ell} P_{\ell}(x)$:
f. $P_{2 \ell-1}(0)=0, P_{2 \ell}(0)=(-1)^{\ell} \frac{1 \cdot 3 \cdot 5 \cdots(2 \ell-1)}{\ell!2^{\ell}}$:
9. $P_{\ell}(1)=1, P_{\ell}(-1)=(-1)^{\ell}$:

$$
(2 \ell+1) P_{\ell}(\mu)=P_{\ell+1}^{\prime}(\mu)-P_{\ell-1}^{\prime}(\mu)
$$

 4 nalume ta $(-1,1)$ pug úh2mumjgnıu:
q. $\frac{1}{\sqrt{1-2 x z+z^{2}}}=\left\{\begin{array}{l}\sum_{n=0}^{\infty} P_{n}(x) z^{n},|z|<1 \\ \sum_{n=0}^{\infty} \frac{P_{n}(x)}{z^{n+1}},|z|>1\end{array},-1 \leq x \leq 1:\right.$

4mptah t gncjg inul, nn

$$
P_{\ell}^{m}(\mu)=\left(1-\mu^{2}\right) P_{\ell}^{(m)}(\mu), l=0,1, \cdots ; m=0,1, \cdots, l
$$

 $L_{2}(-1,1)$ unwnuónıpJnıantu l

$$
\int_{-1}^{1}\left(P_{\ell}^{m}\right)^{2} d x=\frac{(\ell+m)!}{(\ell-m)!} \frac{2}{2 \ell+1}
$$

$$
\begin{gathered}
Y_{\ell}^{m}(\theta, \varphi)=\left\{\begin{array}{l}
P_{\ell}^{m}(\cos \theta) \cos m \varphi, m=0,1, \cdots, \ell \\
P_{\ell}^{|m|}(\cos \theta) \sin |m| \varphi, m=-1,-2, \cdots,-\ell \\
\ell=0,1, \cdots
\end{array}\right.
\end{gathered}
$$

 uwancu ta ustanhly \$ntalughwatn: ℓ-nn lumah $Y_{\ell}^{m}, m=0, \pm 1, \cdots, \pm \ell$

$$
Y_{\ell}(s)=\sum_{m=-\ell}^{\ell} a_{\ell}^{m} Y_{\ell}^{m}(s)
$$

$$
\int_{S_{1}}\left(Y_{\ell}^{m}(s)\right)^{2} d s=2 \pi \frac{1+\delta_{0 m}}{2 \ell+1} \frac{(\ell+|m|)!}{(\ell-|m|)!}:
$$

 quemgati

$$
f(s)=\sum_{\ell=0}^{\infty} \sum_{m=--\ell}^{\ell} a_{\ell}^{m} Y_{\ell}^{m}(s)=\sum_{\ell=0}^{\infty} Y_{\ell}(s)
$$

zungh intupny, npuntin

$$
\begin{aligned}
& a_{\ell}^{m}=\frac{2 \ell}{}+1 \\
& 2 \pi(1\left.+\delta_{0 m}\right) \\
& \frac{(\ell-|m|)!}{(\ell+|m|)!} \times \\
& \times \int_{0}^{\pi} \int_{0}^{2 \pi} f(\theta, \varphi) Y_{\ell}^{m}(\theta, \varphi) \sin \theta d \theta d \varphi
\end{aligned}
$$

 цnnnnh

$$
u(r, \theta, \varphi)=R(r) Y(\theta, \varphi)
$$

$$
\begin{gather*}
\left(r^{2} R^{\prime}\right)^{\prime}-\mu R=0 \\
\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial Y}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} Y}{\partial \varphi^{2}}+\mu Y=0 \tag{9}
\end{gather*}
$$

nnentin μ-亿 wahwjun memwutinn t, hul $Y \in C^{\infty}\left(S_{1}\right)$: tpt $\mu=\ell(\ell+$
 wnita hujunch $Y_{\ell}^{m}, m=0, \pm 1, \cdots, \pm \ell$ ustanhl \$ntilighmatina ta:

 qơnnté walumiu hứułuntúpe

$$
\begin{equation*}
r^{\ell} Y_{\ell}(\theta, \varphi), r^{-\ell-1} Y_{\ell}(\theta, \varphi), \ell=0,1, \cdots \tag{10}
\end{equation*}
$$

Lnsotal htunlumul fuanhnating

210. $u_{t t}=a^{2}\left(\left(l^{2}-x^{2}\right) u_{x}\right)_{x}, 0<x<l, t>0$,
$u(0, t)=0, u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x)$, $|u(x, t)|<\infty:$
211. $u_{t t}=a^{2}\left(\left(l^{2}-x^{2}\right) u_{x}\right)_{x}+f(x, t), 0<x<l, t>0$, $u(0, t)=0, u(x, 0)=0, u_{i}(x, 0)=0,|u(x, t)|<\infty:$

ш. $f(\theta, \varphi)=\cos \theta$:

ค. $f(\theta, \varphi)=\cos ^{2} \theta$:
q. $f(\theta, \varphi)=\cos 2 \theta$:

ๆ. $f(\theta, \varphi)=\sin ^{2} \theta$:

 u\$taph Gitpuncu li nnuncu, nnh utenha ytuf ntah V_{1} unintaghmi, hul unnnhan V_{2} :

w. Gtinuniu,

ฉ. ทnunıu:

221. $u_{t}=a^{2}\left(u_{r r}+\frac{2}{r} u_{r}+\frac{1}{r^{2} \sin \theta}\left(\sin \theta u_{\theta}\right)_{\theta}+\frac{1}{r^{2} \sin ^{2} \theta} u_{\varphi \varphi}\right)$.

$$
u\left(r_{0}, \theta, \varphi, t\right)=0, u(r, \theta, \varphi, 0)=f(r, \theta, \varphi):
$$

222. $u_{t t}=a^{2}\left(\frac{1}{r^{2}}\left(r^{2} u_{r}\right)_{r}+\frac{1}{r^{2} \sin \theta}\left(\sin \theta u_{\theta}\right)_{\theta}\right)$,

$$
\begin{aligned}
& 0 \leq r \leq r_{0}, 0 \leq \theta \leq \pi, t>0 \\
& u_{r}\left(r_{0}, \theta, t\right)=P_{n}(\cos \theta) f(t), u(r, \theta, 0)=u_{t}(r, \theta, 0)=0:
\end{aligned}
$$

223.

$$
\begin{aligned}
& u_{t t}=a^{2}\left(\frac{1}{r^{2}}\left(r^{2} u_{r}\right)_{r}+\frac{1}{r^{2} \sin \theta}\left(\sin \theta u_{\theta}\right)_{\theta}+\frac{1}{r^{2} \sin ^{2} \theta} u_{\varphi \varphi}\right) \\
& 0 \leq r \leq r_{0}, 0 \leq \theta \leq \pi, 0 \leq \varphi \leq 2 \pi, t>0 \\
& u_{r}\left(r_{0}, \theta, \varphi, t\right)=f(t) P_{n}^{m}(\cos \theta) \cos m \varphi, f(0)=f^{\prime}(0)=0 \\
& u(r, \theta, \varphi, 0)=u_{t}(r, \theta, \varphi, 0)=0
\end{aligned}
$$

1.

2.

q. ヒпи $п n n n$:
3.

 huưuutin:
4.
ш. $z=f\left(x^{2}+y^{2}\right):$ ค. $z=f\left(x y+y^{2}\right)$: я. $u=f(y / x, z / x)$:

ๆ. $u=f\left((x-y) / z,(x+y+2 z)^{2} / z\right)$:
t. $F\left(x^{2}-y^{2}, x-y+z\right)=0$:
q. $F\left(e^{-x}-y^{-1}, z+\frac{x-\ln |y|}{e^{-x}-y^{-1}}\right)=0$:
t. $F\left(x^{2}-4 z,(x+y)^{2} / x\right)=0$: р. $F\left(x^{2}+y^{2}, z / x\right)=0$:

ค. $F\left(\frac{x^{2}}{y}, x y-\frac{3 z}{x}\right)=0$: d. $F\left(\frac{1}{x+y}+\frac{1}{z}, \frac{1}{x-y}+\frac{1}{z}\right)=0$:
h. $F\left(x^{2}+y^{4}, y\left(z+\sqrt{z^{2}+1}\right)\right)=0$:
2. $F\left(\frac{1}{x}-\frac{1}{y}, \ln |x y|-\frac{z^{2}}{2}\right)=0$:
;u. $F\left(x^{2}+y^{2}, \operatorname{arctg}(x / y)+(z+1) e^{-x}\right)=0$:
১. $F\left(z^{2}-y^{2}, x^{2}+(y-z)^{2}\right)=0$:
4. $F\left(\frac{z}{x}, 2 x-4 z-y^{2}\right)=0$: h. $F\left(z-\ln |x|, 2 x(z-1)-y^{2}\right)=0$:
©. $F\left(\operatorname{tg} z+\operatorname{ctg} x, 2 y+2 \operatorname{tg} z c t g x+\operatorname{ctg}^{2} x\right)=0$:
ท. $F\left((x+y+z) /(x-y)^{2},(x-y)(x+y-2 z)\right)=0$:
б. $F((x-y)(z+1),(x+y)(z-1))=0$:

ง. $\left.F\left(u(x-y), u(y-z),(x+y+z) / u^{2}\right)\right)=0$:
ر. $F(x / y, x y-2 u,(z+u-x y) / x))=0$:
a. $\left.F\left((x-y) / z,(2 u+x+y) z,(u-x-y) / z^{2}\right)\right)=0$:
5.
ш. $z=2 x y:$ f. $z=y e^{x}-e^{2 x}+1$: $\mathbf{q} . z=y^{2} e^{2 \sqrt{x}-2}$.

ๆ. $u=(1-x+y)(2-2 x+z):$ t. $u=(x y-2 z)\left(\frac{\dot{x}}{y}+\frac{y}{x}\right)$:
6.
w. $y^{2}-x^{2}-\ln \sqrt{y^{2}-x^{2}}=z-\ln |y|$:

ค. $2 x^{2}(y+1)=y^{2}+4 z-1$: $\mathbf{q} \cdot(x+2 y)^{2}=2 x(z+x y)$:
ก. $\sqrt{z / y^{3}} \sin x=\sin \sqrt{z / y}:$ t. $2 x y+1=x+3 y+z^{-1}$:
q. $x-2 y=x^{2}+y^{2}+z$: t. $2 x^{2}-y^{2}-z^{2}=a^{2}$:

ก. $\left(\left(y^{2} z-2\right)^{2}-x^{2}+z\right) y^{2} z=1$: $\boldsymbol{\rho} \cdot x^{2}+z^{2}=5(x z-y)$:
d. $3(x+y+z)^{2}=x^{2}+y^{2}+z^{2}$: ค. $x z(x z-y-x+2 z)^{2}$:

।. $(1+y z)^{3}=3 y z(1+y z-x)+y^{3}$: fu. $x+y+z=0$:
б. $2\left(x^{3}-4 z^{3}-3 y z\right)^{2}=9\left(y+z^{2}\right)^{3}$:
4. $(x-y)(3 x+y+4 z)=4 z$: h. $x z+y^{2}=0$:

7.

 $\operatorname{sign} x=\operatorname{signy}$:
 nnentin $x_{1}=-\frac{1-\sqrt{1-4 l}}{2}, x_{2}=-\frac{1+\sqrt{1-4 l}}{2}:$ Onn $l<1 / 4$

 t:
 щшпшрпцшцша:

u. Turnupnıwquis t wuttinıntip:
8.
w. Uưtinintip thumumiquar t :
$v_{\xi \xi}+v_{\eta \eta}=0, \xi=y, \eta=\operatorname{arctg} x:$

$v_{\eta \eta}-\frac{\zeta}{2 \eta(\xi+\eta)}+\frac{1}{2 \eta} v_{\eta}=0, \xi=y^{2}-x^{2}, \eta=x^{2}:$
q. Uutainıntip hhưtppnimuman t: $v_{\xi \eta}=0$,
$\xi=x+\operatorname{arctg} y, \eta=x-\operatorname{arctg} y:$
 $\xi=\ln \left(x+\sqrt{1+x^{2}}\right) . \eta=\ln \left(y+\sqrt{1+y^{2}}\right):$

$v_{\eta \eta}+2 \frac{\xi^{2}}{\eta^{2}} v_{\xi}+\frac{1}{\eta} e^{\xi}=0, \xi=\frac{y}{x}, \eta=y:$
q. Uútinintip umpmaniwliwit, pugh $x=0$ wnwagphg:
$v_{\eta \eta}+2 \frac{\eta^{2}}{\xi-\eta^{2}} v_{\xi}-\frac{1}{\eta} v_{\eta}=0, \xi=x^{2}+y^{2}, \eta=x$:
t. Ustanintip hhutinfnewima t:

$$
v_{\xi \eta}=0, \xi=x+y-\cos x, \eta=-x+y-\cos x
$$

$v_{\eta \eta}-\frac{\xi}{1+\xi e^{\eta}} v_{\xi}-\eta e^{-2 \eta}=0, \xi=e^{-\eta}-e^{-x}, \eta=x:$

$v_{\xi \eta}-\frac{1}{2(\xi-\eta)} v_{\xi}=0, \xi=x^{2}+y, \eta=y:$

$v_{\xi \eta}+\frac{1}{2(\xi-\eta)}\left(v_{\xi}-v_{\eta}\right)=0, \xi=y-x+2 \sqrt{x}, \eta=y-x-2 \sqrt{x}$:

$v_{\xi \xi}+v_{\eta \eta}-\frac{1}{\eta} v_{\eta}=0, \xi=y-x, \eta=2 \sqrt{-x}$:

$v_{\xi \eta}+\frac{1}{6(\xi+\eta)}\left(v_{\xi}+v_{\eta}\right)=0$,
$\xi=\frac{2}{3}(-y)^{3 / 2}+x, \eta=\frac{2}{3}(-y)^{3 / 2}-x$:

$v_{\xi \xi}+v_{\eta \eta}-\frac{1}{3 \xi} v_{\xi}=0, \xi=\frac{2}{3} y^{3 / 2}, \eta=x:$

$v_{\xi \eta}-\frac{1}{3\left(\xi^{2}-\eta^{2}\right)}\left((2 \xi-\eta) v_{\xi}-(2 \eta-\xi) v_{\eta}\right)=0$,
$\xi=-2(-y)^{1 / 2}+\frac{2}{3} x^{3 / 2}$,

$$
\begin{aligned}
& \eta=-2(-y)^{1 / 2}-\frac{2}{3} x^{3 / 2}, \text { thpt } x>0, y<0 \\
& \xi=-2 y^{1 / 2}+\frac{2}{3}(-x)^{3 / 2} \\
& \eta=-2 y^{1 / 2}-\frac{2}{3}(-x)^{3 / 2}, \text { tht } x<0, y>0
\end{aligned}
$$

$v_{\xi \xi}+v_{\eta \eta}-\frac{1}{\xi} v_{\xi}+\frac{1}{3 \eta} v_{\eta}$,
$\xi=2 \sqrt{y}, \eta=\frac{2}{3} x^{3 / 2}$, thpt $x>0, y>0$,
$\xi=2 \sqrt{-y} \cdot \eta=\frac{2}{3}(-x)^{3 / 2}$, thpt $x<0, y<0$:

$$
\begin{aligned}
& 27 v_{\eta \eta}-105 v_{\xi}+30 v_{\eta}-150 v-2 \xi+5 \eta=0 \\
& \xi=x+3 y, \eta=x
\end{aligned}
$$

$$
v_{\eta \eta}+18 v_{\xi}+9 v_{\eta}-9 v=0, \xi=y+x, \eta=x
$$

9.

ш. $w_{\xi \xi}+w_{\eta \eta}-\frac{15}{2} w=0, \xi=2 x+y, \eta=x$,
$v(\xi, \eta)=u(\eta, \xi-2 \eta)=e^{\frac{5 \xi+3 n}{2}} u(\xi, \eta):$
ค. $w_{\eta \eta}-w_{\xi}=0, \xi=3 x+y, \eta=x$,

$$
v(\xi, \eta)=u(\eta, \xi-3 \eta)=e^{\frac{-s+2 \eta}{4}} w(\xi, \eta)
$$

q. $w_{\xi \eta}+\frac{1}{2} w+\frac{\eta}{2} e^{\varsigma / 2}=0, \xi=2 x+y$,

$$
\eta=x, v(\xi, \eta)=u(\eta, \xi-2 \eta)=e^{\frac{-\xi}{2}} w(\xi, \eta)
$$

ก. $w_{\xi \eta}-7 w=0, \xi=2 x-y, \eta=x$,

$$
v(\xi, \eta)=u(\eta, 2 \eta-\xi)=e^{-\xi-6 \eta} w(\xi, \eta):
$$

t. $w_{\xi \xi}+w_{\eta \eta}-\frac{3}{2} w=0, \xi=2 y-x, \eta=x$,

$$
v(\xi, \eta)=u\left(\eta, \frac{\xi+\eta}{2}\right)=e^{-\xi-\eta} w(\xi, \eta)
$$

q. $w_{\eta \eta}-2 w_{\xi}=0, \xi=y-x, \eta=x+y$,

$$
v(\xi, \eta)=u\left(\frac{\eta-\xi}{2}, \frac{\xi+\eta}{2}\right)=e^{\frac{16 \xi+8 \eta}{32}} w(\xi, \eta)
$$

t. $w_{\xi \eta}-w=0, \xi=x-y, \eta=x+y$,

$$
v(\xi, \eta)=u\left(\frac{\eta+\xi}{2}, \frac{\eta-\xi}{2}\right)=e^{-\xi / 2} w(\xi, \eta):
$$

ถ. $w_{\xi \eta}+9 w+4(\xi-\eta) e^{\xi+\eta}=0, \xi=y-x, \eta=y$, $v(\xi, \eta)=u(\eta-\xi, \eta)=e^{-\xi-\eta} w(\xi, \eta)$:
ค. $w_{\xi \eta}-w+\xi e^{\eta}=0, \xi=y, \eta=x-3 y$,
$v(\xi, \eta)=u(\eta+3 \xi, \xi)=e^{-\eta} w(\xi, \eta):$
d. $w_{\xi \xi}+w_{\eta \eta}-w=0, \xi=2 x-y, \eta=x$,

$$
v(\xi, \eta)=u(\eta, 2 \eta-\xi)=e^{\xi+\eta} w(\xi, \eta)
$$

h. $w_{\xi \xi}+w_{\eta \eta}+2 w=0, \xi=y, \eta=4 x-2 y$,

$$
v(\xi, \eta)=u\left(\frac{\eta+2 \xi}{2}, \xi\right)=e^{-\xi-\eta} w(\xi, \eta)
$$

เ. $w_{\xi \xi}+w_{\eta}=0, \xi=2 x-y, \eta=x+y$,

$$
v(\xi, \eta)=u\left(\frac{\eta+\xi}{3}, \frac{2 \eta-\xi}{3}\right)=e^{\xi-2 \eta} w(\xi, \eta)
$$

¡. $v_{\eta \eta}+6 v_{\xi}+3 v_{\eta}=0, \xi=2 x+y, \eta=x$:
б. $4 v_{\xi \eta}-v_{\xi}+u_{\eta}-v=0, \xi=3 x+y, \eta=x+y$:

10.

แ. $v_{\xi \xi}+v_{\eta \eta}+v_{\zeta \zeta}=0, \xi=x, \eta=-x+y, \zeta=2 x-2 y+z$:
р. $v_{\xi \xi}-2 v_{\xi}=0, \xi=x, \eta=-2 x+y, \zeta=-3 x+z$:
q. $v_{\xi \xi}+2 v=0, \xi=x, \eta=-2 x+y, \zeta=-x+z$:

ก. $v_{\xi \xi}-v_{\eta \eta}+4 v=0, \xi=y+z, \eta=-y-2 z, \zeta=x-z$:
t. $v_{\xi \xi}-v_{\eta \eta}-v_{\zeta \zeta}+2 v_{\eta}=0$, $\xi=x+y, \eta=-x+y, \zeta=-x-y+z$:
q. $v_{\xi \xi}+v_{\eta \eta}-v_{\zeta \zeta}+3 v_{\xi}+\frac{3}{2} v_{\eta}-\frac{9}{2} v_{\zeta}=0$, $\xi=x, \eta=\frac{1}{2}(x+y+z), \zeta=-\frac{1}{2}(3 x+y-z):$
t. $v_{\xi \xi}-v_{\eta \eta}+v_{\zeta \zeta}=0, \xi=x, \eta=\sqrt{2} x+\frac{1}{\sqrt{2}} y, \zeta=z$:

ก. $v_{\eta \eta}+v_{\xi \xi}=0, \xi=x, \eta=-x+y, \zeta=-x+y+z$:
ค. $v_{\xi \xi}+v_{\eta \eta}+v_{\zeta \zeta}=0, \xi=x-2 y, \eta=y, \zeta=2 y+z$:
11.
$u_{t t}=a^{2} u_{x x}, 0<x<l, t>0, a^{2}=\frac{E}{\rho}$,
$u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x), 0<x<l$,

ш. $u(0, t)=u(l, t)=0, t>0$:

ค. $u_{x}(0, t)=u_{x}(l, t)=0, t>0$:
q. $u(0, t)=F(t), u(l, t)=\Psi(t), t>0$:

ๆ. $u_{x}(0, t)-h u(0, t)=u_{x}(l, t)+h u(l, t)=0, t>0$,
 qulumentopjui qnnowlhgn:
t. $u(0, t)=0, E S u_{x}(l, t)=k u_{t}(l, t), t>0$, nnunti k-a qhúwnnnıəjufi qnnouluhgat:
12.
$u_{t t}=a^{2} u_{x x}+g, 0<x<l, t>0$,
$u(0, t)=u_{x}(l, t)=0, t>0$,
$u(x, 0)=0, u_{t}(x, 0)=v_{0}, 0<x<l$,
nnuntin g-a wquin walusuaf unmqugniua t :
13.
$u_{t t}=a^{2} u_{x x}-\alpha u_{t}, 0<x<l, t>0, a^{2}=\frac{E}{\rho}$,
$u(0, t)=u(l, t)=0, t>0$,
$u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x) .0<x<l$,

14.
ш. $\left[r+\frac{R-r}{l} x\right]^{2} u_{t t}=\frac{E}{\rho} \frac{\partial}{\partial x}\left(\left[r+\frac{R-r}{l} x\right]^{2} u_{x}\right)$,
$0<x<l, t>0$,
$u(0, t)=u(l, t)=0, t>0$,

$$
u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x), 0<x<l
$$

f. $\rho S u_{t t}=E \frac{\partial}{\partial x}\left(S u_{x}\right), 0<x<l, t>0$,

$$
\begin{aligned}
& S(0) E u(0, t)-\sigma u(0, t)=0, E u_{x}(l, t)=F(t), t>0 \\
& u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x), 0<x<l:
\end{aligned}
$$

15.

$\rho_{1} u_{1 t t}=E_{1} u_{1 x x},-\infty<x<0, t>0$,
$\rho_{2} u_{2 t t}=E_{2} u_{2 x x}, 0<x<\infty, t>0$,
$u_{1}(0, t)=u_{2}(0, t)=0, E_{1} u_{1 x}(0, t)=E_{2} u_{2 x}(0, t), t>0$,
$u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x),-\infty<x<\infty$,
nnuntin $u(x, t)=\left\{\begin{array}{l}u_{1}(x, t),-\infty<x<0 \\ u_{2}(x, t), 0<x<\infty\end{array}\right.$:

16.

$u_{t t}=a^{2} u_{x x}, 0<x<l, t>0$,
$u(0, t)=0, t>0, M u_{t t}(l, t)=-E S u_{x}(l, t), t>0$,
$u_{t}(l, 0)=-v$,
$u(x, 0)=u_{t}(x, 0)=0,0<x<l:$
17.
$\rho u_{t t}=T u_{x x}+g, 0<x<l, t>0$,
$u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x), 0<x<l$,
hul tanmeha ummówaitna neata htinljum intupg
ш. $T u_{x}(0, t)-\sigma_{1} u(0, t)=0, T u_{x}(l, t)+\sigma_{2} u(l, t)=0, t>0$,
f. $u_{x}(0, t)=u_{x}(l, t)=0, t>0$,
9. $T u_{x}(0, t)=-F(t), T u_{x}(l, t)=\Psi(t), t>0$:
18.
$u_{t t}=\frac{T}{\rho} u_{x x}+\frac{F(x, t)}{\rho}, 0<x<l, t>0$,
$u(0, t)=u(l, t)=0, t>0$,
$u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x), 0<x<l:$
19.
$u_{t t}=a^{2} u_{x x}-2 \nu^{2} u_{t}, 0<x<l, t>0$,
$u(0, t)=u(l, t)=0, t>0$,
$u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x), 0<x<l$,
 qñowuhgn:

20.

$$
\left\{\begin{array}{l}
v_{x}+L i_{t}+R i=0 \\
i_{x}+C v_{t}+G v=0
\end{array}\right.
$$

nnuntinh
$v_{x x}=C L v_{t t}+(C R+G L) v_{t}+G R v, 0<x<l, t>0$,
$v(0, t)=0, v_{t}(l, t)=-E(t), t>0$,
$v(x, 0)=F(x), v_{t}(x, 0)=\frac{G F(x)-f^{\prime}(x)}{C}, 0<x<l:$
21.

$u_{t t}=a^{2} u_{x x}, 0<x<l, t>0, a^{2}=\frac{G I}{K}$,
$u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x), 0<x<l$,

w. $u_{x}(0, t)=u_{x}(l, t), t>0$,
F. $u(0, t)=u(l, t)=0, t>0$,
9. $u_{x}(0, t)-h u(0, t)=0, u_{x}(l, t)+h u(l, t)=0, t>0$:

22.

$u_{t t}=a^{2}\left(u_{x x}+u_{y y}\right), x, y \in D, t>0$,
$u(x, y, 0)=\varphi(x, y), u_{t}(x, y, 0)=\psi(x, y), x, y \in D$,

ш. $u(x, y, t)=0, x, y \in L, t>0$,

ғ. $\frac{\partial}{\partial \nu} u(x, y, t)=0, x, y \in L, t>0$, ν-匹 L-ha unmpumó wnunugha annưmáa t,
q. $\frac{\partial}{\partial \nu} u(x, y, t)=\frac{F(x, y, t)}{T}, x, y \in L, t>0$,

凡. $T \frac{\partial}{\partial \nu} u(x, y, t)+\sigma u(x, y, t)=0, x, y \in L, t>0$,

t. $u_{t t}=a^{2}\left(u_{x x}+u_{y y}\right)+\frac{F(x, y, t)}{\rho}, x, y \in D, t>0$, $u(x, y, 0)=\varphi(x, y), u_{t}(x, y, 0)=\psi(x, y), x, y \in D$. $u(x, y, t)=0, x, y \in L, t>0:$
q. $u_{t t}=a^{2}\left(u_{x x}+u_{y y}\right)-\alpha u, x, y \in D, t>0, \alpha=\frac{\beta}{\rho}$, $u(x, y, 0)=\varphi(x, y), u_{t}(x, y, 0)=\psi(x, y), x, y \in D$, $u(x, y, t)=0, x, y \in L, t>0$,
 fuunnıpjnifiat:

23.

щ. $3 x^{2}+y^{2}$:

ค. $\frac{1}{2} e^{(3 y-5 x) / 2}\left(2 y+\left(x+y+\frac{3}{4}\right) e^{-(x+y)^{2}}+\right.$

$$
\left.+\left(x-y-\frac{3}{4}\right) e^{-(x-y)^{2}}\right):
$$

q. $\frac{5}{2} \sin \frac{x+y}{2}-\frac{3}{2} \sin \frac{5 x+y}{6}$:

ๆ. $\cos (y-x-\sin x), \quad \xi=y-x-\sin x, \quad \eta=y+x-\sin x:$
เ. $\left(x-\frac{2 y^{3}}{3}\right)^{2}+\frac{1}{2}\left(\sin (x+2 y)-\sin \left(x-\frac{2 y^{3}}{3}\right)+\right.$

$$
\left.+\left(x-\frac{2 y^{3}}{3}\right) \cos \left(x-\frac{2 y^{3}}{3}\right)-(x+2 y) \cos (x+2 y)\right)
$$

$$
\xi=x-2 / 3 y^{3}, \eta=x+2 y:
$$

q. $2(x+y) e^{y}, \xi=y, \quad \eta=y+2 x$:
t. $x+\cos (x-y+\sin x), \xi=y-x-\sin x, \eta=y+x-\sin x:$

ก. $1-\sin (y-x+\cos x)+e^{y+\cos x} \sin (x+y+\cos x)$, $\xi=-x+y+-\cos x, \eta=y+x+\cos x:$
ค. $x+3\left(e^{-y}+y-1\right)+\frac{1}{2} e^{-1 / 2(x+3 y)}\left(2 x+2 y+3 x y+6 y^{2}\right)$. $\xi=x+3 y, \quad \eta=y+x:$
d. $2 e^{(-2 x-y-\sin x) / 4} \sin x \sin \frac{y+\sin x}{2}$:
h. $-1 / 3-e^{2 x}+e^{y}-e^{2 y}+4 / 3 e^{3 y}$:

1. $-x^{2} / 2+\cos \left(x-1+e^{y}\right)-\cos x, \xi=x, \eta=x+e^{y}:$
|u. $e^{x} \operatorname{sh} \frac{y-\cos x}{2}+\sin x \cos \frac{y-\cos x}{2}$, $\xi=2 x-y+\cos x, \eta=2 x+y-\cos x:$
o. $e^{3 x+2 y}-e^{3(x+y)}:$
2. $-x e^{(x-y) / 2}$:
3.

щ. $x_{1}^{3} x_{2}^{2}+\left(3 x_{1} x_{2}^{2}+x_{1}^{3}\right) t^{2}+x_{1} t^{4}+\left(x_{1}^{2} x_{2}^{4}-3 x_{1}^{3}\right) t+$ $+\frac{1}{3}\left(x_{2}^{4}-9 x_{1}+6 x_{1}^{2} x_{2}^{2}\right) t^{3}+\frac{1}{5}\left(2 x_{2}^{2}+x_{1}^{2}\right) t^{5}+\frac{1}{35} t^{7}:$
ค. $x_{1} x_{2} x_{3}+x_{1}^{2} x_{2}^{2} x_{3}^{2} t+\frac{1}{3}\left(x_{1}^{2} x_{2}^{2}+x_{1}^{2} x_{3}^{2}+x_{2}^{2} x_{3}^{2}\right) t^{3}+$

$$
+\frac{1}{15}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right) t^{5}+\frac{1}{105} t^{7}:
$$

q. $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+3 t^{2}+x_{1} x_{2} t$:

ก. $e^{x_{1}} \cos x_{2}+t\left(x_{1}^{2}-x_{2}^{2}\right):$
t. $x_{1}^{2}+x_{2}^{2}+t+2 t^{2}$:
q. $e^{x_{1}} \operatorname{ch} t+e^{-x_{1}}$ sht :
t. $\frac{x_{1}}{x_{1}^{2}-t^{2}}$:
27.
ш. $x y z+t(x y+z)+\frac{a x t^{2}}{2}+\frac{b t^{3}}{6}$:
f. $z \cos 2 t \sin \sqrt{2}(x+y)+\left(\operatorname{tarctg} t-\frac{1}{2} \ln \left(1+t^{2}\right)\right) x e^{y} \cos z:$
9. $x \sin y \cos t+y \cos z \sin t+x\left(\frac{t}{2} \ln \left(1+t^{2}\right)-t+\operatorname{arctg} t\right)$:

ๆ. $a z+b x y+\frac{x y}{a^{3}}(a t-\sin a t) \sin a z:$
t. $2 x y+\frac{a x y z}{b^{2}}\left(b t+e^{-b t}-1\right)+\frac{1}{2} x \sin \sqrt{2} y \cos \sqrt{2} z \sin 2 t$:
q. $x^{2} y z^{2}+\frac{a}{b} x y z t+y t \sin \omega x e^{\omega z}+y t^{2}\left(x^{2}+z^{2}\right)-\frac{a}{b^{2}} x y z \sin b t$:
t. $y e^{x} \sin z+x z \sin y \sin t+$

$$
+x y z\left(\frac{t^{2}-1}{2} \ln \left(1+t^{2}\right)+2 \operatorname{arctg} t-\frac{3}{2} t^{2}\right):
$$

ฉ. $x e^{y} \operatorname{ch} t+y e^{z} \operatorname{sh} t+\operatorname{ayz}\left(\frac{t^{3}}{6}+t-\frac{t}{2} \ln \left(1+t^{2}\right)-\operatorname{arctg} t\right):$
ค. $x y t-\frac{1}{6} x y t^{3}$:
d. $\varphi(x, y, z)+t \psi(x, y, z):$
h. $\varphi(x, y, z)+t \psi(x, y, z)+\frac{t^{2}}{2} f(x, y, z):$

1. $\varphi(x, y, z)+t \psi(x, y, z)+f(x, y, z) \int_{0}^{t}(t-\tau) g(\tau) d \tau$:
2.

щ. $a t+\frac{1}{2} b x^{2} t^{2}+\frac{1}{12} b t^{4}+e^{-x} c h t$:
f. $x+\frac{a x t^{3}}{6}+\sin x \sin t$:
Q. $a t+a\left(e^{-t}-1\right)+b \sin x \cos t+c \cos x \sin t$:

ก. $\frac{a t}{b}-\frac{a}{b^{2}} \sin b t+\cos (x-t):$
t. $x(t-\sin t)+\sin (x+t)$:
31.
ш. $\left\{\begin{array}{l}x^{2} t+\frac{a^{2} t^{3}}{3}+\sin x \cos a t, x>0, t<\frac{x}{a} \\ \frac{x^{3}}{3 a}+x a t^{2}+\sin x \cos a t, x>0, t>\frac{x}{a}\end{array}:\right.$
$\int 1-e^{x} \operatorname{chat}+\frac{1}{2 a} \operatorname{ch}(x+a t)-\frac{1}{2 a} \operatorname{ch}(x-a t)$,
f. $\left\{\begin{array}{c}x>0, t<\frac{x}{a} \\ -e^{a t} \operatorname{sh} x+\frac{1}{2 a} \operatorname{ch}(x+a t)-\frac{1}{2 a} \operatorname{ch}(x-a t),\end{array}\right.$

$$
x>0, t>\frac{x}{a}
$$

a $x-e^{x}$ chat $+x^{2} t+\frac{a^{2} t^{3}}{3}, x>0, t<\frac{x}{a}$
9.
$a t--e^{a t} c h x+t x^{2}+\frac{a^{2} t^{3}}{3}, x>0, t>\frac{x}{a}$
$1+3 a^{2} t^{2} x+x^{3}+\frac{e^{x} s h a t}{a}\left(2+a^{2} t^{2}-2 x+x^{2}\right)+$
$+2 e^{x} \operatorname{tchat}(x-1), x>0, t<\frac{x}{a}$
$1+a^{3} t^{3}+3 a t x^{2}-\frac{2}{a}+\frac{2-2 a t+a^{2} t^{2}+x^{2}}{2} e^{a t} c h x+$ $+2 \frac{a t-1}{a} x e^{a t} s h x, x>0, t>\frac{x}{a}$
t. $\left\{\begin{array}{l}\frac{c h a t-\cos t}{1+a^{2}} e^{x}, x>0, t<\frac{x}{a} \\ \frac{e^{\frac{t}{s} h x}}{1+a^{2}}-\frac{e^{x} \cos t}{1+a^{2}}+\frac{\cos \left(t-\frac{x}{a}\right)}{1+a^{2}}, x>0, t>\frac{x}{a}\end{array}\right.$
q. $\left\{\begin{array}{l}\frac{\cos x(a t-\sin a t)}{a^{3}}, x>0, t<\frac{x}{a} \\ \frac{x-a t+a t \cos x-\cos a t \sin x}{a^{3}}, x>0, t>\frac{x}{a}\end{array}\right.$
t. $\left\{\begin{array}{l}\frac{(a \sin t-\sin a l) \sin x}{a\left(a^{2}-1\right)}, x>0, t<\frac{x}{a} \\ \frac{1}{a}+\frac{\sin t \sin x}{a^{2}-1}+\frac{\cos a t \cos x}{a\left(a^{2}-1\right)}-\frac{a \cos \left(t-\frac{x}{a}\right)}{a^{2}-1}, x>0, t>\frac{x}{a}\end{array}\right.$
n. $\left\{\begin{array}{l}\frac{e^{x}(\text { shat-at })}{a^{3}}, x>0, t<\frac{x}{a} \\ -\frac{1}{a^{3}}+\frac{e^{a t} c h x}{a^{3}}-\frac{e^{x} t}{a^{2}}-\frac{(x-a t)^{2}}{2 a^{3}}, x>0, t>\frac{x}{a}\end{array}\right.$ $\frac{\text { chat -cht }}{a^{2}-1} \operatorname{ch} x+\frac{c h x s h a t}{a}+$ chatsh $x, x>0, t<\frac{x}{a}$
ק. $\left\{\frac{c h t c h x}{1-a^{2}}+\frac{\operatorname{shatshx}}{a^{2}-1}+\frac{c h\left(l-\frac{x}{a}\right)}{a^{2}-1}-\right.$
$-\frac{a^{2}+1}{a(a-1)}$ chatsh$x, x>0, t>\frac{x}{a}$

$$
\begin{aligned}
& \frac{a^{2} t^{3}}{3}+x+t x^{2}+\frac{t \cos x}{a^{2}}-\frac{\cos x \sin a t}{a^{3}}, \\
& \quad x>0, t<\frac{x}{a} \\
& -\frac{t}{a^{2}}+x+\frac{x}{a^{3}}+a t^{2} x+\frac{x^{3}}{3 a}+\frac{t \cos x}{a^{2}}-\frac{\cos a t \sin x}{a^{3}}, \\
& x>0, t>\frac{x}{a}
\end{aligned}
$$

$\int \frac{a^{2} t^{3}}{3}+t x^{2}+\frac{\sin x}{a\left(a^{2}-1\right)}(a \sin t-\sin a t)+\cos a t \cos x$

$$
x>0, t<\frac{x}{a}
$$

h.

$$
\begin{gathered}
\frac{1}{a}+\frac{a^{2} t^{3}}{3}+t x^{2}+\frac{a^{3}-a+1}{a\left(a^{2}-1\right)} \cos a t \cos x+\frac{\sin t \sin x}{a^{2}-1}+ \\
+\frac{a \cos \left(t-\frac{x}{a}\right)}{1-a^{2}}, x>0, t>\frac{x}{a}
\end{gathered}
$$

$$
-x+e^{t} x+\cos a t \cos x-\frac{e^{x} \operatorname{shat}}{a}
$$

$$
x>0, t<\frac{x}{a}
$$

$$
\begin{gathered}
\frac{1}{a}-a-\frac{c h x e^{a t}}{a}+a e^{t-x / a}-a t+e^{t} x+\cos a t \cos x \\
x>0, t>\frac{x}{a}
\end{gathered}
$$

32.

w. $\left\{\begin{array}{l}0,0<t \leq x / a \\ \mu(t-x / a), t \geq x / a\end{array}\right.$:

ค. $u(x, t)=f(x+a t)-f(x-a t), f(u)=\frac{1}{2 a} \int_{-2 c}^{u} \varphi(z) d z$, nnuntr

$$
\varphi(z)=\left\{\begin{array}{l}
0,-\infty<z<-2 c \\
v_{0},-2 c<z<-c \\
0,-c<z<c \\
v_{0}, c<z<2 c \\
0,2 c<z<\infty
\end{array}:\right.
$$

q. $\left\{\begin{array}{l}0,0<t \leq x / a \\ -a \int_{0}^{t-\frac{x}{a}} \nu(s) d s, t \geq x / a\end{array}\right.$
n. $\left\{\begin{array}{l}0,0<t \leq x / a \\ -a e^{h(x-a t)} \int_{0}^{t-\frac{x}{a}} e^{a h s} \chi(s) d s . t \geq x / a\end{array}\right.$:
t. $\left\{\begin{array}{l}\omega t, 0<a t<x \\ \frac{\omega(t-h t)}{1-a h}, x<a t\end{array}\right.$:
q. $\left\{\begin{array}{l}f(x+a t), 0<a t<x \\ f(x+a t)-f(a t-x), x \leq a t\end{array}\right.$
t. $\left\{\begin{array}{l}f(x+a t), 0<a t<x \\ f(x+a t)+f(a t-x), x \leq a t\end{array}\right.$:
n. $\left\{\begin{array}{l}f(x+a t), 0<a t<x \\ f(x+a t)+f(a t-x)+ \\ +2 h e^{h(x-a t)} \int_{0}^{x-a t} e^{-h s} f(-s) d s, x<a t\end{array}\right.$
p. $\left\{\begin{array}{l}f(x+a t), 0<a t<x \\ f(x+a t)+\frac{1+a h}{1-a h} f(a t-x), x<a t\end{array}\right.$
d. $u(x, t)=\varphi\left(t-\frac{x}{a}\right)+\psi\left(t+\frac{x}{a}\right)$,
npuntin

$$
\begin{aligned}
& -\varphi(-z)=\psi(z)=\left\{\begin{array}{l}
1 / 2 \sin \frac{\pi a z}{l}, 0 \leq z \leq \frac{l}{a} \\
0, \frac{l}{a} \leq z
\end{array},\right. \\
& \int \frac{1}{\pi^{2}+h^{2} l^{2}}\left(\frac{\pi^{2}-h^{2} l^{2}}{2} \sin \frac{\pi a z}{l}+\right. \\
& \varphi(z)=\left\{\begin{array}{l}
\left.\quad+\pi h l\left(\cos \frac{\pi a z}{l}-e^{-a h z}\right)\right), 0 \leq z \leq \frac{l}{a}
\end{array}\right. \\
& -\frac{\pi h l}{\pi^{2}+h^{2} l^{2}}\left(1+e^{h l}\right) e^{-a h z}, \frac{l}{a} \leq z, t \geq x / a
\end{aligned}
$$

h. $A \sin \frac{\pi x}{l} \cos \frac{\pi a t}{l}, 0<x<l, t>0$:

$$
\begin{aligned}
\mathrm{l} \cdot u(x, t) & =\frac{\varphi(x-a t)+\varphi(x+a t)}{2}, 0<l<l, t>0 \\
\varphi(z) & =\left\{\begin{array}{l}
A z,-l<z<l \\
A(2 l-z), l<z<3 l
\end{array}\right. \\
\varphi(z) & =\varphi(z+4 l),-\infty<z<\infty
\end{aligned}
$$

fu. $\frac{1}{2} \cos \frac{\pi(x-a t)}{l}+\frac{1}{2} \cos \frac{\pi(x+a t)}{l}$:
б. $u(x, t)=\varphi(a t-x)-\varphi(a t+x)$,
$\varphi(x)=0$, tnf $-l<x<l$, hul $(-l, l)$ uhqulumjghg η nipu $\varphi(x)$

$$
\varphi^{\prime \prime}(x)+\frac{1}{m l} \varphi^{\prime}(x)=\varphi^{\prime \prime}(x-2 l)-\frac{1}{m l} \varphi^{\prime}(x-2 l)
$$

33.
$\cdots .\left\{\begin{array}{c}\frac{e^{x} s h a t}{a}+x(1-\cos t)+\cos 2 a t \sin 2 x, t<\frac{x}{a} \\ \frac{e^{a t} s h x}{a}+x(1-\cos t)+\cos 2 a t \sin 2 x+\sin \left(t-\frac{x}{a}\right), \\ t>\frac{x}{a}\end{array}\right.$:
f. $\left\{\begin{array}{l}\frac{t^{3} x}{6}+\frac{c h x s h a t}{a}+\text { chatsh } x, t<\frac{x}{a} \\ t-\frac{x}{a}+\frac{t^{3} x}{6}+\frac{1+a}{a} \operatorname{chatsh} x, t>\frac{x}{a}\end{array}\right.$:

$$
\begin{aligned}
& \frac{1+a}{2 a} \cos (a t-x)+\frac{t \cos x}{a^{2}}+\frac{a-1}{2 a} \cos (a t+x)+ \\
& \quad+\frac{\cos a t \sin x}{a^{3}}, t<\frac{x}{a} \\
& \frac{1}{a}+a+\frac{a-\cos x}{a} \cos a t \cos x+\frac{t \cos }{a^{2}}- \\
& \quad-a c h\left(t-\frac{x}{a}\right)+\frac{\cos a t \sin x}{a^{3}} t>\frac{x}{a}
\end{aligned}
$$

9.
10. $u(r, t)=\frac{f_{1}(r+t)}{r}+\frac{f_{2}(r-t)}{r}, r \neq 0$:
 ghucitne Gniscumpun qne tia:
11. $u(r, t)=\frac{(r-a t) \varphi(r-a t)+(r+a t) \varphi(r+a t)}{2 r}+$

$$
+\frac{1}{2 a r} \int_{r-a t}^{r+a t} \xi \psi(\xi) d \xi
$$

 पس®i ξ-пh huúwn: $\lim _{r \rightarrow 0}=a t \varphi^{\prime}(a t)+\varphi(a t)+t \psi(a t):$
36. $u(r, t)=\frac{1}{2 a r} \int_{0}^{t} d \tau \int_{r-a(t-\tau)}^{\tau+a(t-\tau)} \xi f(\xi, \tau) d \xi$:
37.
$\boldsymbol{\omega} .\left\{\begin{array}{l}u_{0}, 0 \leq t<\frac{r_{0}-r}{a} \\ u_{0} \frac{r-a t}{2 r}, \frac{r_{0}-r}{a}<t<\frac{r_{0}+r}{a} \\ 0, \frac{r_{0}+r}{a}<t\end{array}\right.$.
tpt $\quad 0<r<r_{0}$ L
$\left\{\begin{array}{l}0,0 \leq t<\frac{r-r_{0}}{a} \\ u_{0} \frac{r-a t}{2 r}, \frac{r-r_{0}}{a}<t<\frac{r_{0}+r}{a}, \\ 0, \frac{r_{0}+r}{a}<t\end{array}\right.$
trat $\quad r_{0}<r$:
f. $\left\{\begin{array}{l}u_{0} t, 0 \leq t<\frac{r_{0}-r}{a} \\ u_{0} \frac{r_{0}^{2}-(r-a t)^{2}}{4 a r}, \frac{r_{0}-r}{a}<t<\frac{r_{0}+r}{a}, \\ 0, \frac{r_{0}+r}{a}<t\end{array}\right.$
tpt $0<r<r_{0}$ L

$$
\left\{\begin{array}{l}
0,0 \leq t<\frac{r-r_{Q}}{a} \\
u_{0} \frac{r_{0}^{2}-(r-a t)^{2}}{4 a r}, \frac{r-r_{Q}}{a}<t<\frac{r_{0}+r}{a} \\
0, \frac{r_{0}+r}{a}<t
\end{array}\right.
$$

tipt $\quad r_{0}<r$:

$$
\begin{aligned}
& \frac{\varphi(x-a t)+\varphi(x+a t)}{2}+ \\
& +\frac{1}{2 a} \int_{x-a t}^{x+a t} \psi(z) d z+\frac{1}{2 a} \int_{0}^{t} d \tau \int_{x-a(t-\tau)}^{x+a(t-\tau)} f(z, \tau) d z:
\end{aligned}
$$

39. $L(u)=u_{t t_{0}}-a^{2} u_{x x}+c^{2} u$ outinuunnhh Ohswah \$ntalghma $R=J_{0}\left(c \sqrt{(t-\tau)^{2}+\frac{(x-\xi)^{2}}{a^{2}}}\right)-a t$, hul $L(u)=u_{t t}-a^{2} u_{x x}-c^{2} u$

$$
\begin{aligned}
& \text { w. } \frac{\varphi(x-a t)+\varphi(x+a t)}{2} \\
& -\frac{c t}{2} \int_{x-a t}^{x+a t} \frac{J_{1}\left(c \sqrt{t^{2}+\frac{(x-\xi)^{2}}{a^{2}}}\right)}{\sqrt{t^{2}+\frac{(x-\xi)^{2}}{a^{2}}}} \psi(\xi) d \xi+ \\
& +\frac{1}{2 a} \int_{0}^{t} d \tau \int_{x-a(t-\tau)}^{x+a(t-\tau)} J_{0}\left(c \sqrt{t^{2}+\frac{(x-\xi)^{2}}{a^{2}}}\right) f(\xi, \tau) d \xi: \\
& \text { f. } \frac{\varphi(x-a t)+\varphi(x+a t)}{2}-
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{c t}{2} \int_{x-a t}^{x+a t} \frac{I_{1}\left(c \sqrt{t^{2}+\frac{(x-\xi)^{2}}{a^{2}}}\right)}{\sqrt{t^{2}+\frac{(x-\xi)^{2}}{a^{2}}}} \psi(\xi) d \xi+ \\
& +\frac{1}{2 a} \int_{0}^{t} d \tau \int_{x-a(t-\tau)}^{x+a(t-\tau)} I_{0}\left(c \sqrt{t^{2}+\frac{(x-\xi)^{2}}{a^{2}}}\right) f(\xi, \tau) d \xi:
\end{aligned}
$$

40. $\frac{1}{2} \varphi(x y)+\frac{y}{2} \varphi\left(\frac{x}{y}\right)+\frac{\sqrt{x y}}{y} \int_{x y}^{\frac{x}{y}} \frac{\varphi(z)}{z^{3 / 2}} d z-$
$-\frac{\sqrt{x y}}{2} \int_{x y}^{\frac{x}{y}} \frac{\psi(z)}{z^{3 / 2}} d z:$
41.

w. 4nzhh fuainnh Intóncung

$$
\frac{1}{2} e^{-\frac{a}{2} x}\left(\varphi(x+t)+\varphi(t-x)+\int_{t-x}^{x+t}\left[\frac{a}{2} \varphi(\tau)+\psi(\tau)\right] d \tau\right):
$$

$$
e^{-\frac{a}{2} x}\left(e^{\frac{a}{4}(x+t)} \varphi\left(\frac{x+t}{2}\right)+e^{\frac{a}{4}(x-t)} \psi\left(\frac{x-t}{2}\right)-\varphi(0)\right):
$$

a. Un2hh fuainnh Intóncưp
$\frac{1}{2}\left[e^{-\frac{b}{2} x} \varphi(x+t)+e^{\frac{b}{2} x} \varphi(t-x)\right]+\frac{1}{2} \int_{t-x}^{x+t} e^{\frac{b}{2}(t-\tau)} \psi(\tau) d \tau:$

9nınumjh fuañh ınıónlug̣

$e^{\frac{b}{2} t}\left[e^{-\frac{b}{4}(x+t)} \varphi\left(\frac{x+t}{2}\right)+e^{\frac{b}{4}(x-t)} \psi\left(\frac{x-t}{2}\right)-\varphi(0)\right):$
9. 4nahh fuannt inconcun

$$
\begin{aligned}
\frac{1}{2} e^{-\frac{o}{2} x+\frac{b}{2} t} & \left(e^{-\frac{b}{2}(x+t)} \varphi(x+t)+e^{\frac{b}{2}(x-t)} \varphi(t-x)+\right. \\
& \left.+\int_{t-x}^{x+t} e^{-\frac{b}{2} \tau}\left[\frac{a}{2} \varphi(\tau)+\psi(\tau)\right] d \tau\right):
\end{aligned}
$$

9nıpuwjh fuañh Lniontupi
$e^{-\frac{a}{2} x+\frac{b}{2} t}\left[e^{\frac{(a-b)(x+t)}{4}} \varphi\left(\frac{x+t}{2}\right)+\right.$

$$
\left.+e^{\frac{(a+b)(x-t)}{4}} \psi\left(\frac{x-t}{2}\right)-\varphi(0)\right]:
$$

42.

ш. $e^{-\frac{a}{4}(x-t)} \psi\left(\frac{x+t}{2}\right)+e^{-\frac{a}{2} t} \varphi(x-t)-e^{-\frac{a}{4}(x+t)} \psi\left(\frac{x-t}{2}\right)$:

ค. $e^{-\frac{b}{4}(x-t)} \psi\left(\frac{x+t}{2}\right)+e^{\frac{b}{2} t} \varphi(x-t)--e^{-\frac{b}{4}(x-3 t)} \psi\left(\frac{x-t}{2}\right):$
q. $e^{-\frac{a}{2} x+\frac{b}{2} t}\left[e^{\frac{(a-b)(x+t)}{4}} \psi\left(\frac{x+t}{2}\right)+\right.$

$$
\left.+e^{\frac{a(x-t)}{2}} \varphi(x-t)-e^{\frac{(a-b)(x-t)}{4}} \psi(x-t)\right]:
$$

43.

ш. $u=\frac{1}{2}(\varphi(x+y)+\psi(x+y)+\varphi(x-y)-\psi(x-y))$,

$$
v=\frac{1}{2}(\varphi(x+y)+\psi(x+y)-\varphi(x-y)+\psi(x-y)):
$$

ค. $u=\frac{1}{2}\left(\varphi\left(\frac{x+y}{2}\right)-\psi\left(\frac{x-y}{2}\right)+\psi(0)\right)$,

$$
v=\frac{1}{2}\left(\varphi\left(\frac{x+y}{2}\right)+\psi\left(\frac{x-y}{2}\right)-\varphi(0)\right):
$$

q. $u=\frac{1}{2}\left(\varphi(x+y)-\psi\left(\frac{x+y}{2}\right)-\psi\left(\frac{x-y}{2}\right)\right)$,

$$
v=\frac{1}{2}\left(\varphi(x+y)+\psi\left(\frac{x+y}{2}\right)+\psi\left(\frac{x-y}{2}\right)-\varphi(0)-\psi(0)\right):
$$

ๆ. $u=\frac{1}{2}\left(\psi\left(\frac{x+y}{2}\right)+\varphi(x-y)-\psi\left(\frac{x-y}{2}\right)\right)$,
$v=\frac{1}{2}\left(\psi\left(\frac{x+y}{2}\right)-\varphi(x-y)+\psi\left(\frac{x-y}{2}\right)+\varphi(0)-\psi(0)\right):$
t. $u=f_{1}(x+y)+f_{2}(x-y)$,
$v=f_{1}(x+y)-f_{2}(x-y)$,
$f_{1}(z)=\sum_{k=0}^{\infty}(-1)^{k}\left(\varphi\left(\frac{z}{3^{k}}\right)+\psi\left(\frac{2 z}{3^{k+1}}\right)\right)$,
$f_{2}(z)=\varphi(z)-f_{1}(z):$
44.
$u(x, y)=\frac{1}{\sqrt{a}}\left[\sqrt{a} \varphi\left(\frac{x+\sqrt{a} y}{2}\right)+\psi\left(\frac{x-\sqrt{a} y}{2}\right)-\psi(0)\right]$,
$v(x, y)=-\sqrt{a} \varphi\left(\frac{x+\sqrt{a} y}{2}\right)+\psi\left(\frac{x-\sqrt{a} y}{2}\right)-\sqrt{a} \varphi(0):$
45.

万 $u_{t}=a^{2}\left(S u_{x}\right)_{x}, 0<x<l, t>0, a^{2}=\frac{k}{c \rho}$,
$u(x, 0)=\varphi(x), 0<x<l$,
w. $u_{x}(0, t)=u_{x}(l, t)=0, t>0$,
f. $u_{x}(0, t)=-\frac{1}{k S(0)} q(t), u_{x}(l, t)=\frac{1}{k S(l)} Q(t), t>0$.
q. $u_{x}(0, t)-h_{1}(u(0, t)-\tau(t))=0$.
$u_{x}(l, t)+h_{2}(u(l, t)-\theta(t))=0, t>0$,
$h_{i}-\frac{\chi_{i}}{k}, i=1,2$,

 juigit:
46.
ш. $u_{t}=a^{2} \Delta_{r} u-\beta u, 0 \leq r<R . t>0, a^{2}=\frac{k}{c \rho}, \beta=\frac{\alpha}{c \rho}$,
$u_{r}(R, t)=0, t>0 . u(r, 0)=T, 0 \leq r<R$,
$\Delta_{r} u=u_{r r}+\frac{2}{r} u_{r}=\frac{1}{r^{2}}\left(r^{2} u_{r}\right)_{r}$,

f. $u_{t}=a^{2} \Delta_{r} u+\frac{Q}{c \rho}, 0 \leq r<R . t>0, a^{2}=\frac{k}{c \rho}$,
$k u_{r}(R, t)+\alpha u(R, t)=0, t>0, u(r, 0)=T, 0 \leq r<R$.
$\Delta_{r} u=u_{r r}+\frac{2}{r} u_{r}=\frac{1}{r^{2}}\left(r^{2} u_{r}\right)_{r}$.

47. $u_{t}=a^{2} u_{x x}, 0<x<l, t>0, a^{2}=\frac{\alpha D}{c}$, $u(x, 0)=\varphi(x), 0<x<l$.
ш. $u(0, t)=\mu(t), u_{x}(l, t)=0, t>0$,

ค. $u_{x}(0, t)=-\frac{1}{\alpha S D} q(t), u_{x}(l, t)+\frac{d}{D} u(l, t)=0, t>0$,

48.
ш. $u_{t}=D u_{x x}-\gamma \sqrt{u}-\frac{\sigma d}{S}(u-v(t)), 0<x<l, t>0$,

$$
\begin{aligned}
& u_{x}(0, t)-\frac{d}{D}(u(0, t)-v(t))=0 \\
& u_{x}(l, t)+\frac{d}{D}(u(l, t)-v(t))=0 \\
& u(x, 0)=\varphi(x)
\end{aligned}
$$

р. $u_{t}=D u_{x x}+\gamma u u_{t}-\frac{\sigma d}{S}(u-v(t)), 0<x<l, t>0$,
$u_{x}(0, t)-\frac{d}{D}(u(0, t)-v(t))=0$,
$u_{x}(l, t)+\frac{d}{D}(u(l, t)-v(t))=0$,
$u(x, 0)=\varphi(x)$,

49. $u_{t}=a^{2}\left(u_{r r}+\frac{1}{r} u_{r}\right)$,

$$
u(R, t)=0, u(r, 0)=\varphi(r):
$$

50. $u_{t}=a^{2}\left(u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}+u_{z z}\right)$,
$u(r, \theta,-h, t)=u(r, \theta, h, t)=u(R, \theta, z, t)=0$,
$u(r, \theta, z, 0)=\varphi(r, \theta, z):$
51. $u_{t}=a^{2}\left(u_{r r}+\frac{2}{r} u_{r}\right), t>0,0 \leq r<R$,
$u(R, t)=\psi(t), u(r, 0)=\varphi(r):$
52. $u_{t}=a^{2}\left(u_{r r}+\frac{2}{r} u_{r}+\frac{1}{r^{2} \sin \theta}\left(\sin \theta u_{\theta}\right)_{\theta}+\frac{1}{r^{2} \theta^{2}} u_{\varphi \varphi}\right)$, $u(R, \theta, \varphi, t)=0, u(r, \theta, \varphi, 0)=\psi(r, \theta, \varphi):$
53. $u_{t}=a^{2}\left(u_{x x}+u_{y y}\right)$,

$$
\begin{aligned}
& u(0, y, t)=u(a, y, t)=u(x, 0, t)=u(x, b, t)=0 \\
& u(0, x, y)=\varphi(x, y):
\end{aligned}
$$

54. $u_{t}=a^{2} u_{x x}$,

$$
k u_{x}(-R, t)+q=-k u_{x}(R, t)+q=u_{x}(0, t)=u(x, 0)=0:
$$

55. $T_{r r}+\frac{1}{r} T_{r}+\frac{1}{r^{2}} T_{\varphi \varphi}=\frac{1}{k} T_{t}$,
$T(a, \varphi, t)=T(b, \varphi, t)=0$,
$T(r, \varphi, 0)=f(r, \varphi):$
56.

ш. $\frac{1}{2 a \sqrt{\pi t}} \int_{0}^{\infty}\left(e^{-\frac{(x-\xi)^{2}}{4 a^{2} t}}-e^{-\frac{(x+\xi)^{2}}{4 n^{2} t}}\right) \varphi(\xi) d \xi$:
 Unw:
f. $\frac{1}{2 a \sqrt{\pi t}} \int_{0}^{\infty}\left(e^{-\frac{(x-\xi)^{2}}{4 a^{2} t}}+e^{-\frac{(x+\xi)^{2}}{4 a^{2} t}}\right) \varphi(\xi) d \xi:$
 पпш:
9. $\frac{e^{-h t}}{2 a \sqrt{\pi t}} \int_{0}^{\infty}\left(e^{-\frac{(x-\xi)^{2}}{4 a^{2} t}}-e^{-\frac{(2+1 \varsigma)^{2}}{4 a^{2} t}}\right) \varphi(\xi) d \xi$:
nnnatin \$niclughuri quanntit $e^{-h t} v(x, t)$ intupn4:
$\eta \cdot \frac{e^{-h t}}{2 a \sqrt{\pi t}} \int_{0}^{\infty}\left(e^{-\frac{(x-\varsigma)^{2}}{4 a^{2} t}}+e^{-\frac{(x+\zeta)^{2}}{4 a^{2} t}}\right) \varphi(\xi) d \xi:$
nnncith \$niaughwa hainntil $e^{-h t} v(x, t)$ intupnu:
t. $\frac{1}{2 a \sqrt{\pi}} \int_{0}^{t} \int_{0}^{\infty} \frac{1}{\sqrt{t-\tau}}\left[e^{-\frac{(x-\xi)^{2}}{4 a^{2}(t-\tau)}}-e^{-\frac{(x+\xi)^{2}}{4 a^{2}(t-\tau)}}\right] f(\xi . \tau!d \xi d \tau:$
 unu:
q. $\frac{1}{2 a \sqrt{\pi}} \int_{0}^{t} \int_{0}^{\infty} \frac{1}{\sqrt{t-\tau}}\left[e^{-\frac{(x-\xi)^{2}}{1 a^{2}(t-\tau)}}+e^{-\frac{(x+\epsilon)^{2}}{4 a^{2}(t-\tau)}}\right] f(\xi, \tau) d \xi d \tau$:

Unu:

$$
\begin{gathered}
\text { t. } \frac{1}{2 a \sqrt{\pi}} \int_{0}^{t} \int_{0}^{\infty} \frac{e^{-h(t-\tau)}}{\sqrt{t-\tau}}\left[e^{-\frac{(x-\xi)^{2}}{4 a^{2}(t-\tau)}}-e^{-\frac{(x+\xi)^{2}}{4 a^{2}(t-\tau)}}\right] \times \\
\times f(\xi, \tau) d \xi d \tau:
\end{gathered}
$$

$$
\begin{gathered}
\text { ฉ. } \frac{1}{2 a \sqrt{\pi}} \int_{0}^{t} \int_{0}^{\infty} \frac{e^{-h(t-\tau)}}{\sqrt{t-\tau}}\left[e^{-\frac{(x-\xi)^{2}}{4 a^{2}(t-\tau)}}+e^{-\frac{(x+\xi)^{2}}{4 a^{2}(t-\tau)}}\right] \times \\
\times f^{(\xi, \tau) d \xi d \tau:}
\end{gathered}
$$

$$
\begin{aligned}
& \text { ค. } \frac{1}{2 a \sqrt{\pi t}} \int_{0}^{\infty}\left(e^{-\frac{(x-\xi)^{2}}{4 a^{2} t}}-e^{-\frac{(x+\xi)^{2}}{4 a^{2} t}}\right) \varphi(\xi) d \xi+ \\
& +\frac{1}{2 a \sqrt{\pi}} \int_{0}^{t} \int_{0}^{\infty} \frac{e^{-h(t-\tau)}}{\sqrt{t-\tau}}\left[e^{-\frac{(x-\xi)^{2}}{4 a^{2}(t-\tau)}}-e^{-\frac{(x+\xi)^{2}}{4 a^{2}(t-\tau)}}\right] \times \\
& \times f(\xi \cdot \tau) d \xi d \tau: \\
& \text { ¢. } \frac{1}{2 a \sqrt{\pi t}} \int_{0}^{\infty}\left(e^{-\frac{(x-\xi)^{2}}{4 a^{2} t}}+e^{-\frac{(x+\xi)^{2}}{4 a^{2} t}}\right) \varphi(\xi) d \xi+ \\
& +\frac{1}{2 a \sqrt{\pi}} \int_{0}^{t} \int_{0}^{\infty} \begin{array}{c}
\frac{e^{-h(t-\tau)}}{\sqrt{t-\tau}}\left[e^{-\frac{(x-\xi)^{2}}{4 a^{2}(t-\tau)}}+e^{-\frac{(x+\xi)^{2}}{4 a^{2}(t-\tau)}}\right] \times \\
\times f(\xi, \tau) d \xi d \tau:
\end{array}
\end{aligned}
$$

61.

.土. i $-x^{2}-y^{2}-4 t$:
ค. ! $-\left(x^{2}+y^{2}\right)^{2}-16\left(x^{2}+y^{2}\right) t-32 t^{2}$:
9. $x^{2}+y^{2}+4 t$:
7. $\epsilon^{t+y+2 t}$:
t. $32 t^{2}+16 t\left(x^{2}+y^{2}\right)+\left(x^{2}+y^{2}\right)^{2}$:
q. $384 t^{3}+288 t^{2}\left(x^{2}+y^{2}\right)+36 t\left(x^{2}+y^{2}\right)^{2}+\left(x^{2}+y^{2}\right)^{3}$:
64.
w. ${ }^{-l^{2} t} \sin l x_{1}$:
F. ${ }^{t} \cos l x_{1}$:
q. $e^{t^{2} t} \operatorname{chl} x_{1}$:
n. $e^{l^{2} t} \operatorname{shl} x_{1}$:
b. $e^{-\left(l_{1}^{2}+l_{2}^{2}\right) t} \sin l_{1} x_{1} \sin l_{2} x_{2}$:
q. $e^{-\left(l_{1}^{2}+l_{2}^{2}\right) t} \sin l_{1} x_{1} \cos l_{2} x_{2}$:
t. $e^{-\left(l_{1}^{2}+l_{2}^{2}\right) t} \cos l_{1} x_{1} \cos l_{n} x_{n}$:
n. $e^{-\left(l_{1}^{2}+l_{2}^{2}\right) t} \cos l_{1} x_{1} \sin l_{2} x_{2}$:
$=e^{t \sum_{i=1}^{n} l_{i}^{2}} \sin l_{1} x_{1} \sin l_{2} x_{2} \cdots \sin l_{n} x_{n}$:
d. $e^{-l_{1}^{2} t} \sin l_{1} x_{1}+e^{-l_{n}^{2} t} \cos l_{n} x_{n}$:
h. $e^{l_{1} x_{1}} e^{-l_{1}^{2} t}$:
l. $e^{l_{1} x_{1}} \cdots e^{-l_{n} x_{n}} e^{-t \sum_{i=1}^{n} l_{i}^{2}}$:
fu. $2 t(x+y)+x y(1+x+y):$
o. $240 t^{2}(x+y)+40 t(x+y)^{2}+(x+y)^{5}$:
4. $60 t^{2}+20 t\left(x^{2}+y^{2}+z^{2}\right)+\left(x^{2}+y^{2}+z^{2}\right)^{2}$:
h. $\left(2 t+x^{2}\right)\left(2 t+y^{2}\right)\left(2 t+z^{2}\right)$:

ภ. $x\left(6 t+x^{2}\right) y\left(6 t+y^{2}\right) z\left(6 t+z^{2}\right):$
ๆ. $12 t^{2}+y^{2} z^{2}+x^{2}\left(y^{2}+z^{2}\right)+4 t\left(x^{2}+y^{2}+z^{2}\right):$
๘. $x^{3}+y^{3}+z^{3}+6 t(x+y+z)$:
66.
w. $e^{l^{4} t} \sin l x_{1}$:
f. $e^{l^{4} t} \cos l x_{1}$:
q. $e^{l^{4} t} \operatorname{chl} x_{1}$:
7. $e^{l^{4} t} \operatorname{shl} x_{1}$:
t. $e^{\left(l_{1}^{2}+l_{2}^{2}\right)^{2} l} \sin l_{1} x_{1} \sin l_{2} x_{2}$:
q. $e^{\left(l_{1}^{2}+l_{2}^{2}\right)^{2} t} \sin l_{1} x_{1} \cos l_{2} x_{2}$:
t. $e^{\left(l_{1}^{2}+l_{2}^{2}\right)^{2} t} \cos l_{1} x_{1} \cos l_{n} x_{n}$:
n. $e^{\left(l_{1}^{2}+l_{2}^{2}\right)^{2} t} \cos l_{1} x_{1} \sin l_{2} x_{2}$:
p. $e^{t\left(\sum_{i=1}^{n} l_{i}^{2}\right)^{2}} \sin l_{1} x_{1} \sin l_{2} x_{2} \cdots \sin l_{n} x_{n}$:
d. $e^{l_{1}^{4} t} \sin l_{1} x_{1}+e^{l_{n}^{4} t} \cos l_{n} x_{n}$:
h. $e^{l_{1}^{4} t} e^{l_{1} x_{1}}$:
L. $e^{l_{1} x_{1}} \cdots e^{l_{n} x_{n}} e^{t\left(\sum_{i=1}^{n} l_{i}^{2}\right)^{2}}$:
|u. $x y+x^{2} y+x y^{2}$:
d. $480 t(x+y)+(x+y)^{5}$:
4. $120 t+\left(x^{2}+y^{2}+z^{2}\right)^{2}$:
h. $(x y z)^{2}+8 t\left(x^{2}+y^{2}+z^{2}\right)$:
ð. $x y z\left(x^{2} y^{2} z^{2}+72 t\left(x^{2}+y^{2}+z^{2}\right)\right):$
ก. $24 t+y^{2} z^{2}+x^{2}\left(y^{2}+z^{2}\right):$
๘. $x^{3}+y^{3}+z^{3}$:
67.
w. $\sin x_{1}$ cht $+\cos x_{1}$ sht :
f. $t x^{2} y^{2} z^{2}+4 / 3 t^{3}\left(x^{2}+y^{2}+z^{2}\right)+\left(x^{3}+y^{3}+z^{3}\right)^{2}+$ $+36 t^{2}\left(5 x^{2}+5 y^{2}+2 y z+5 z^{2}+2 x(y+z)\right):$
9. $t(x y z)^{3}+(x+y+z)^{3}+12 t^{3} x y z\left(x^{2}+y^{2}+z^{2}\right)$:

ๆ. $\operatorname{ch} l x_{1} \operatorname{ch} l^{2} t+s h m x_{1} \operatorname{shm}^{2} t$:
t. $e^{a x_{1}} c h a^{2} t+e^{b x_{1}} \operatorname{sh} b^{2} t$:

70.

w. $\left.u\right|_{S}=0, S-п$ humnnneh subtinlinujpat,

71.

 рүб:

 4 nLjpg :
72. $\Delta u=0$, nnuntin $u(x, y, z)-\mathrm{n}$ uncigtannmighua t:
73. $\left.\frac{\partial \varphi}{\partial n}\right|_{S}=0$, nnentan S-n uhan sumuah sulftilinupa t:
74.
ш. $\Delta=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}$:
p. $\Delta=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}+\frac{\partial^{2}}{\partial z^{2}}$:
q. $\Delta=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+$

$$
+\frac{1}{r^{2} \sin ^{2} \partial} \frac{\partial^{2}}{\partial \psi^{2}}:
$$

75.

ш. A :р. $\frac{A}{a} x=\frac{A}{a} \mu \cos \varphi: q \cdot A+B y=A+B \rho \sin \varphi$:
7. $A x y=\frac{A}{2} \rho^{2} \sin 2 \varphi:$ t. $A+\frac{B}{a} y=A+\frac{B}{a} \rho \sin \varphi$:
q. $\left.\frac{A-B}{2}+\frac{B-A}{i^{2}} r^{2}-r^{2}\right):$
76.

p. Aar - const :
a. $\frac{A}{2} a^{2}-y^{2}=$ art

77.

t. $A+B \frac{a}{\rho} \sin f$ q. $\frac{A}{2} \frac{A-B}{2}$ ar 20 :
78.

t. $-(A+0.75 B) \frac{a^{2}}{\rho} \sin \varphi+0.25 B \frac{a^{4}}{3 \rho^{3}} \sin 3 \varphi+$ const $:$
79. $u(\rho)=u_{1}+\left(u_{2}-u_{1}\right) \frac{\ln \frac{\frac{\partial}{a}}{\ln \frac{b}{a}} \text { : }}{\text { : }}$
80. $\frac{u_{0}}{\alpha} \varphi=\frac{u_{0}}{\alpha} \operatorname{arctg} \frac{y}{r}$:
81. $\varphi_{1}+\frac{\varphi_{2}-\varphi_{1}}{\pi} \operatorname{arctg} \frac{y}{x}$:
82.
w. $u=u_{0}: \boldsymbol{f} \cdot u(\rho) \therefore u_{0}:$
83. $u(z)=u_{1}+\left(u_{2}-1, \frac{\vdots}{n}\right.$:
84. $u_{1}+\left(u_{2}-u_{1}\right) \frac{!!}{!}:$
85. $\frac{1}{4}\left(\rho^{2}-a^{2}\right)$:
86. $B=\frac{a A}{2}, u(\rho) \because \frac{\vdots}{\vdots}+\cdots,!$
87.

แ. $u_{2}+\frac{A}{4}\left(\rho^{2}-b^{2}\right) \cdots \frac{1}{1} \frac{1}{1}\left(b^{2}-a^{2}\right) \ln \frac{b}{p}$
р. $u_{1}+\frac{A}{1}\left(\rho^{2}-a^{2}+C-\frac{1 b}{\because} \ln n^{?}\right.$.
9. $\frac{A \rho^{2}}{4}-a\left(\frac{a A}{2}-\ddot{Z}\right) \eta_{B_{1}}+\operatorname{cotist} . C^{\prime}=\frac{A\left(b^{2}-a^{2}\right)+2 a b}{2 b}$
88.

แ. $u(\rho)=\frac{1}{6}\left(\rho^{2}-\sigma^{2}\right)$:
ค. $\frac{A}{12}\left(r^{3}-a^{3}\right)+\frac{P}{6}\left(r^{2}-c^{2}\right)$:
89.
w. $u(\rho)=\frac{1}{6}\left(r^{2}-a^{2}\right)-\frac{1}{6} a b(a+b)\left(\frac{1}{a}-\frac{1}{r}\right)$:
f. $\frac{A}{6}\left(r^{2}-a^{2}\right)+\frac{B}{2}(r-a)-a b\left(\frac{A}{6}(b+a)+\frac{B}{2}\right)\left(\frac{1}{a}-\frac{1}{r}\right):$
90. $u(\rho)=u_{2}+\frac{u_{1}-u_{2}}{\frac{1}{a}-\frac{1}{b}}\left(\frac{1}{\rho}-\frac{1}{b}\right)$:
91.

92.
u. $k=-3:$ p. $k=-2: \mathbf{q} \cdot k= \pm 2 i: \eta . k= \pm 3: t . k=0$, tptt $n=24 k=n-2$, thet $n>2$:
99.
w. $x+2 y+z\left(2 x-y^{2}\right)+\frac{z^{3}}{3}$: p. $x e^{y} \cos z:$ q. $x(x+y)+z(y-$
$z)+e^{x} \sin z: \eta x \sin y \operatorname{ch} z+\operatorname{sh} z \cos y:$
เ. $x^{3}+z\left(2 x^{2}-y\right)-3 x z^{2}-\frac{2}{3} z^{3}+2$:
q. $x z+\cos 2 x \operatorname{ch} 2 z-\sin 2 y \operatorname{ch} 2 z:$
100.
ш. $u(a)=\frac{T_{0} \ln \frac{b}{a}-T \ln \frac{c}{a}}{\ln \frac{b}{c}}:$

ค. $u(a)=T-b U \ln \frac{c}{a}$:
9. $u(a)=\frac{T\left(1+b h \ln \frac{b}{a}\right)-b W \ln \frac{c}{a}}{1+b h \ln \frac{b}{c}}:$

ๆ. $T-c U \ln \frac{b}{a}$:
101.
ш. $u(a)=\frac{T_{0} \ln \frac{a}{d}-T_{1} \ln \frac{a}{c}}{\ln \frac{c}{d}}$:

$$
u(b)=\frac{T_{0} \ln \frac{b}{d}-T_{1} \ln \frac{b}{c}}{\ln \frac{c}{d}}:
$$

ค. $u(a)=T+c U \ln \frac{a}{d}, u(b)=T+c U \ln \frac{b}{d}:$
102.
ш. $u(b)=\frac{T_{0} \ln \frac{b}{a}-T \ln \frac{b}{c}}{\ln \frac{c}{a}}$:
р. $u(b)=T-a U \ln \frac{x}{a}$:
9. $u(b)=\frac{T\left(1+a h \ln \frac{b}{a}\right)-a W \ln \frac{c}{b}}{1+a h \ln \frac{c}{a}}$:

ๆ. $T+c U \ln \frac{b}{a}:$

105.

щ. $z^{3}+i C:$ f. $-i e^{z}+i(1+C):$ q. $\sin z+i C$:

106.

w. $\frac{1}{4}\left(x^{4}+y^{4}-6 x^{2} y^{2}\right)+C:$ р. $\rho^{y} \cos x+C: q .-c h x \cos y+C:$
п. sh. $x \sin y+C:$ t. ch $x \sin y+C:$ q. $-\operatorname{sh} x \cos y+C$:
107.
щ. $x^{3} y-x y^{3}+C y+C_{0}$: ค. $e^{x} \sin y+C x+C_{0}:$ q. $e^{x} \sin y+$ $C y+C_{0}:$ п. $x^{2} y-1 / 3 y^{3}+x y+1 / 2\left(y^{2}-x^{2}\right)+C x+C_{0}:$ t. $1 / 2 x^{2} y-x y^{2}+1 / 3 x^{3}-1 / 6 y^{3}+C y+C_{0}:$
109.
$G(M, P)=\frac{1}{r_{0}}-\frac{1}{r_{1}}$.
$r_{0}=M P=\sqrt{(x-\xi)^{2}+(y-\eta)^{2}+(z-\zeta)^{2}}$,
$r_{0}=M P=\sqrt{(x-\xi)^{2}+(y-\eta)^{2}+(z+\zeta)^{2}}:$
110. $u=e\left(\frac{1}{r_{0}}-\frac{1}{r_{1}}\right), r_{0}-$ C \& $r_{1}-\mathrm{n}$ nnn2unnu ta hazuitu ampinnn łu[inpnus:

$$
\begin{aligned}
& \sigma=-e \frac{\zeta}{\left[(x-\xi)^{2}+(y-\eta)^{2}+\zeta^{2}\right]^{3 / 2}} \\
& u(x, y, z)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{z f(\xi, \eta)}{\left[(x-\xi)^{2}+(y-\eta)^{2}+z^{2}\right]^{3 / 2}} d \xi d \eta
\end{aligned}
$$

$$
\sigma=-\varepsilon\left(\frac{\partial u}{\partial n}\right)_{S}
$$

 t :

111.

$G(M, P) \sum_{n=-\infty}^{\infty}\left(\frac{1}{r_{n}}-\frac{1}{r_{n}^{\prime}}\right)$,
$r_{n}=\sqrt{(x-\xi)^{2}+(y-\eta)^{2}+(z-(2 n l+\zeta))^{2}}$,
$r_{n}^{\prime}=\sqrt{(x-\xi)^{2}+(y-\eta)^{2}+(z-(2 n l-\zeta))^{2}}$,
$M=M(x, y, z), \quad P=P(\xi, \eta, \zeta):$

 qnıquustin tá:

112.

$G(x, y, z ; \xi, \eta, \zeta)=\sum_{n=-\infty}^{\infty}\left(\frac{1}{r_{n}}-\frac{1}{r_{n}^{\prime}}-\frac{1}{\overline{r_{n}}}+\frac{1}{\overline{r_{n}^{\prime}}}\right)$,
$r_{n}=\sqrt{(x-\xi)^{2}+(y-\eta)^{2}+(z-(2 n l+\zeta))^{2}}$,
$r_{n}^{\prime}=\sqrt{(x-\xi)^{2}+(y-\eta)^{2}+(z-(2 n l-\zeta))^{2}}$,
$\overline{r_{n}}=\sqrt{(x+\xi)^{2}+(y-\eta)^{2}}+(z-(2 n l+\zeta))^{2}$,
$r_{n}^{\prime}=\sqrt{(x+\xi)^{2}+(y-\eta)^{2}+(z-(2 n l-\zeta))^{2}}$,

 qniquastion tif:

113.

$G(M, P)=\sum_{k=0}^{n-1}\left(\frac{1}{r_{k}}-\frac{1}{r_{k}^{\prime}}\right)$,
$r_{k}=\sqrt{r^{2}+s^{2}-2 r s \cos (\varphi-(\psi+2 \alpha k))+(z-\zeta)^{2}}$,
$r_{k}^{\prime}=\sqrt{r^{2}+s^{2}-2 r s \cos (\varphi-(2 \alpha k-\psi))+(z-\zeta)^{2}}$,
$M=M(r, \varphi, z), P=P(s, \psi, \zeta):$

114.

$G(x, y ; \xi, \eta)=\ln \frac{r_{0}}{r_{0}}$,
$r_{0}=\sqrt{(x-\xi)^{2}+(y-\eta)^{2}}$,
$r_{0}^{\prime}=\sqrt{(x-\xi)^{2}+(y+\eta)^{2}}$,
$u(x, y)=V\left(1-\frac{1}{\pi} \operatorname{arctg} \frac{y}{x}\right):$
115.
$G(r, \varphi ; s, \psi)=\sum_{k=0}^{n-1} \ln \frac{r_{k}^{\prime}}{r_{k}}$,
$r_{k}=\sqrt{r^{2}+s^{2}-2 r s \cos (\varphi-(\psi+2 \alpha k))}$,
$r_{k}=\sqrt{r^{2}+s^{2}-2 r s \cos (\varphi-(2 \alpha k-\psi))}:$
116.
$G\left(M, M_{0}\right)=\frac{1}{r_{0}}-\frac{R}{\rho_{0} r_{1}}$,
$r_{0}=M M_{0}, \rho_{0}=O M_{0}, r_{1}=M M_{1}$,

117.
$u=e\left(\frac{1}{r_{0}}-\frac{R}{\rho_{0} r_{1}}\right), \sigma=-e \frac{R^{2}-\rho_{0}^{2}}{R r_{0}^{3}}$,
$u=\frac{1}{4 \pi} \int_{S} \frac{R^{2}-\rho_{0}^{2}}{R r_{0}^{3}} f d S:$

118.
ш. $G\left(M_{-} M_{0}\right)=\ln \frac{1}{r_{0}}-\ln \frac{R}{\rho_{0} r_{1}}$,
f. $G\left(\rho, \varphi ; \rho_{0}, \varphi_{0}\right)=G^{*}\left(\rho, \varphi ; \rho_{0}, \varphi_{0}\right)-G^{*}\left(\rho, \varphi ; \rho_{0}, 2 \pi-\varphi_{0}\right)$, nnuntn $0 \leq \varphi \leq \pi, G^{*}=G\left(M, M_{0}\right)$:
q. $G\left(\rho, \varphi ; \rho_{0}, \varphi_{0}\right)=G^{*}\left(\rho, \varphi ; \rho_{0}, \varphi_{0}\right)-G^{*}\left(\rho, \varphi ; \rho_{0}, 2 \pi-\varphi_{0}\right)-$ $-G^{*}\left(\rho, \varphi ; \rho_{0}, \pi-\varphi_{0}\right)+G^{*}\left(\rho, \varphi ; \rho_{0}, \pi+\varphi_{0}\right)$,
nnuntin $0 \leq \varphi \leq \frac{\pi}{2}, G^{*}=G\left(M, M_{0}\right)$:
n. $G\left(\rho, \varphi ; \rho_{0}, \varphi_{0}\right)=$
$=\sum_{k=0}^{n-1}\left(G^{*}\left(\rho, \varphi ; \rho_{0}, 2 k \alpha+\varphi_{0}\right)-G^{*}\left(\rho, \varphi ; \rho_{0}, 2 k \alpha-\varphi_{0}\right)\right)$,
nnuntin $\rho \leq R, 0 \leq \varphi \leq \alpha=\frac{\pi}{n}, G^{*}=G\left(M, M_{0}\right)$:
t. $G=G\left(M, M_{0}\right)-G\left(M, M_{0}^{\prime}\right)$,
$G\left(M, M_{0}\right)=\frac{1}{r_{0}}-\frac{R}{\rho_{0} r_{1}}$,
nnentin M_{0}^{\prime} utinn uhutionphly t M_{0} litunha $z=0$ humpnıpjwa alumenúmúp:

q. $G=G\left(M, M_{0}\right)-G\left(M, M_{0}^{\prime}\right)+G\left(M, M_{0}^{\prime \prime}\right)-G\left(M, M_{0}^{\prime \prime \prime}\right):$

119. $G\left(M, M_{0}\right)=\sum_{n=0}^{\infty}\left(\frac{e_{n}}{r_{n}}-\frac{e_{n}^{\prime}}{r_{n}^{\prime}}\right)$,
$M=M(\rho, \theta, \varphi), M_{0}=M_{0}\left(\rho_{0}, \theta_{0}, \varphi_{0}\right), r_{n}=M M_{n}$,
$r_{n}^{\prime}=M M_{n}^{\prime}, M_{n}=M\left(\rho_{n}, \theta_{0}, \varphi_{0}\right), M_{n}^{\prime}=M\left(\rho_{n}^{\prime}, \theta_{0}, \varphi_{0}\right)$,
$e_{n}=\left\{\begin{array}{l}\left(\frac{a}{b}\right)^{k}, n=2 k \\ \left(\frac{b}{a}\right)^{k+1}, n=2 k+1\end{array}, e_{n}^{\prime}=\left\{\begin{array}{l}\left(\frac{a}{b}\right)^{k} \frac{a}{\rho_{0}}, n=2 k \\ \left(\frac{b}{a}\right)^{k} \frac{b}{\rho_{0}}, n=2 k+1\end{array}\right.\right.$,

$$
\begin{aligned}
& \rho_{n}=\left\{\begin{array}{l}
\left(\frac{a^{2}}{b^{2}}\right)^{k}, n=2 k \\
\left(\frac{b^{2}}{a^{2}}\right)^{k+1} \rho_{0}, n=2 k+1
\end{array}\right. \\
& \rho_{n}^{\prime}=\left\{\begin{array}{l}
\left(\frac{a^{2}}{b^{2}}\right)^{k} \frac{a^{2}}{\rho_{0}}, n=2 k \\
\left(\frac{b^{2}}{a^{2}}\right)^{k} \frac{b^{2}}{\rho_{0}}, n=2 k+1
\end{array}\right.
\end{aligned}
$$

120.
$G\left(M, M_{0}\right)=\sum_{n=0}^{\infty} \ln \frac{e_{n} r_{n}^{\prime}}{r_{n} e_{n}^{\prime}}$,
$M=M(\rho, \varphi), M_{0}=M_{0}\left(\rho_{0}, \varphi_{0}\right), r_{n}=M M_{n}$,
$r_{n}^{\prime}=M M_{n}^{\prime}, M_{n}=M\left(\rho_{n}, \varphi_{0}\right), M_{n}^{\prime}=M\left(\rho_{n}^{\prime}, \varphi_{0}\right):$

121.
$\frac{1}{4 \pi} \int_{S} f(y)\left[\frac{2}{|y-x|}-\frac{1}{R} \ln (R-|x| \cos \gamma+|y-x|)\right] d \sigma+C$,

122.
щ. $G(z, \xi)=\ln \left|\frac{z-\bar{\xi}}{z-\xi}\right|$,

ค. $G(z, \xi)=\ln \left|\frac{\left(z-\xi^{*}\right)(z-\bar{\xi})}{(z-\xi)\left(z-\overline{\xi^{*}}\right)}\right|$,

a. $G(z, \xi)=\ln \left|\frac{z^{2}-\overline{\xi^{2}}}{z^{2}-\xi^{2}}\right|$,
7. $G(z, \xi)=\ln \left|\frac{e^{z-\bar{\xi}}-1}{e^{z-\xi}-1}\right|:$
123. $u(r)=\left\{\begin{array}{l}2 \pi \mu_{0}\left(a^{2}-\frac{r^{2}}{3}\right), r \leq a \\ \frac{4 \pi}{3} \mu_{0} \frac{a^{3}}{r}, r \geq a\end{array}:\right.$

124. Stu awfunnn fuannh wemenuluwan:
$2 \pi \mu_{0} \int_{0}^{a} \int_{0}^{\pi} \frac{\xi^{2} \sin \theta d \xi d \theta}{R}, R^{2}=\xi^{2}+r^{2}-2 \xi r \cos \theta:$
125. $\left\{\begin{array}{l}2 \pi \mu_{0}\left(b^{2}-a^{2}\right), r<a \\ 2 \pi \mu_{0} b^{2}-\frac{2 \pi \mu_{0}}{3}\left(r^{2}+\frac{2 a^{3}}{r}\right), a<r<b: \\ \frac{4 \pi \mu_{0}}{3}\left(b^{3}-a^{3}\right) \frac{1}{r}, r>b\end{array}\right.$
126. $\left\{\begin{array}{l}2 \pi\left(\mu_{1}\left(a^{2}-\frac{r^{2}}{3}\right)+\mu_{2}\left(c^{2}-b^{2}\right)\right), r<a \\ 2 \pi \mu_{2}\left(c^{2}-b^{2}\right)+\frac{4 \pi}{3} \mu_{1} a^{3} \frac{1}{r}, a<r<b \quad: \\ \frac{4 \pi\left(\mu_{2}\left(c^{3}-b^{3}\right)+a^{3} \mu_{1}\right)}{3 r}, r>c\end{array}\right.$.
127. $\left\{\begin{array}{l}\frac{M(c)}{r}, r>c \\ \frac{M(r)}{r}+4 \pi \int_{r}^{c} \xi \mu(\xi) d \xi, r<c\end{array}, M(r)=4 \pi \int_{0}^{r} \mu(\xi) \xi^{2} d \xi:\right.$
128. $\left\{\begin{array}{l}4 \pi a \mu_{0}, r \leq a \\ \frac{4 \pi a^{2} \mu_{0}}{r}, r>a\end{array}\right.$,

130. Gpt a zwnuynnu qanh Ltaunnnín intinunnyud $t x=0, y=0$,
 intupp:

$$
\begin{aligned}
& \left\{\begin{array}{l}
2 \pi \mu_{0}\left(a^{2}-\frac{r^{2}}{3}\right)-\frac{4 \pi}{3} \mu_{0} \frac{a^{3}}{r_{1}}, r<a \\
\frac{4 \pi}{3} \mu_{0} a^{3}\left(\frac{1}{r}-\frac{1}{r_{1}}\right), r>a
\end{array}\right. \\
& r=\sqrt{x^{2}+y^{2}+(z-b)^{2}}, r_{1}=\sqrt{x^{2}+y^{2}+(z+b)^{2}}
\end{aligned}
$$

131. $\left\{\begin{array}{l}\mu_{0} \pi a^{2}\left(\frac{1}{2}-\ln a-\frac{1}{2} \frac{r^{2}}{a^{2}}\right), r<a \\ \pi a^{2} \mu_{0} \ln \frac{1}{r}, r>a\end{array}\right.$,
nnuntin $a-a$ 2nquah zunuulhñat:

$$
\ln \frac{1}{\sqrt{1+r^{2}-2 r \cos \varphi}}=\sum_{n=1}^{\infty} \frac{r^{n}}{n} \cos n \varphi \quad(|r|<1)
$$

utnıınıónıpjnıahg:
133. $2 a-y \operatorname{arctg} \frac{2 a y}{y^{2}+x^{2}-a^{2}}-$

$$
-\frac{a-x}{2} \ln \left(y^{2}+(a-x)^{2}\right)-\frac{a+x}{2} \ln \left(y^{2}+(a+x)^{2}\right):
$$

134. $\mu_{0}\left[\operatorname{arctg} \frac{x+a}{y}-\operatorname{arctg} \frac{x-a}{y}\right]$:
135. (ρ, φ) 4nnnnh

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\left(a^{2}-\rho^{2}\right) f\left(\psi^{\prime}\right) d \psi}{a^{2}+\rho^{2}-2 a \rho \cos \left(\varphi-\psi^{\prime}\right)}
$$

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\left(\rho^{2}-a^{2}\right) f(\psi) d \psi}{a^{2}+\rho^{2}-2 a \rho \cos (\varphi-\psi)}:
$$

137. Lntơnsún hwniumunn t haciontal

$$
\left.a \int_{0}^{2 \pi} \ln \frac{1}{\sqrt{a^{2}+\rho^{2}-2 a \rho \cos (\varphi-\psi)}} \mu^{\prime} \psi\right) d \psi+\text { const }
$$

 $\mu(\varphi)=\frac{1}{\pi} f(\varphi):$

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{z f(\xi, \eta) d \xi d \eta}{\left[(x-\xi)^{2}+(y-\eta)^{2}+z^{2}\right]^{3 / 2}}
$$

$$
\left(\mu(x, y)=\frac{1}{2 \pi} f(x, y)\right) \text { pwamodlnपұ: }
$$

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{f(\xi, \eta) d \xi d \eta}{\left[(x-\xi)^{2}+(y-\eta)^{2}+z^{2}\right]^{3 / 2}}+\text { const } \\
& \left(\mu(x, y)=\frac{1}{2 \pi} f(x, y)\right) \text { fucuwôlnç: }
\end{aligned}
$$

 htunlumi untupg

$$
\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y f(\xi) d \xi}{(x-\xi)^{2}+y^{2}} \quad\left(\mu(x)=\frac{1}{\pi} f(x)\right):
$$

140.

> (husumutn tqnujha upujuwactan)

س. $\frac{l}{2 \pi a} \sin \frac{2 \pi a t}{l} \sin \frac{2 \pi x}{l}$:
f. $\frac{2 l}{a \pi} \sin \frac{a \pi t}{2 l} \sin \frac{\pi x}{2 l}+\cos \frac{5 a \pi t}{2 l} \sin \frac{5 \pi x}{2 l}$:
9. $\frac{2 l}{a \pi} \sin \frac{a \pi t}{2 l} \sin \frac{\pi x}{2 l}+\frac{2 l}{3 a \pi} \sin \frac{3 a \pi t}{2 l} \sin \frac{3 \pi x}{2 l}+$

$$
+\frac{8 l}{\pi^{2}} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)^{2}} \cos \frac{\pi a(2 k+1) x}{2 l} \sin \frac{\pi(2 k+1) x}{22 l}
$$

n. $\cos \frac{a \pi t}{2 l} \cos \frac{\pi x}{2 l}+\frac{2 l}{3 a \pi} \sin \frac{3 a \pi t}{2 l} \cos \frac{3 \pi x}{2 l}+$ $+\frac{2 l}{5 a \pi} \sin \frac{5 a \pi t}{2 l} \cos \frac{5 \pi x}{2 l}:$
t. $\frac{2 h l^{2}}{\pi^{2} c(l-c)} \sum_{k=1}^{\infty} \frac{1}{k^{2}} \sin \frac{\pi k c}{l} \sin \frac{\pi k x}{l} \cos \frac{\pi k a t}{l}$:
q. $\frac{8 h l^{2}}{\pi^{3}} \sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{3}} \sin \frac{\pi(2 k+1) x}{l} \cos \frac{\pi a(2 k+1) t}{l}$:
t. $\frac{8 h l^{3}}{\pi^{4} a} \sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{4}} \sin \frac{\pi(2 k+1) x}{l} \sin \frac{\pi a(2 k+1) t}{l}$:
n. $\cos \frac{\pi a t}{l} \cos \frac{\pi x}{l}+\frac{l}{5 a \pi} \sin \frac{5 a \pi t}{l} \cos \frac{5 \pi x}{l}$:

ค. $\frac{4 h v_{0}}{\pi^{2} a} \sum_{k=1}^{\infty} \frac{1}{k} \frac{\sin \frac{\pi k c}{l} \cos \frac{\pi k h}{2 l}}{1-\left(\frac{k h}{l}\right)^{2}} \sin \frac{\pi k x}{l} \cos \frac{\pi k a t}{l}$:
d. $\frac{8 l r}{\pi^{2}} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)^{2}} \cos \frac{\pi(2 k+1) a t}{2 l} \sin \frac{\pi(2 k+1) x}{2 l}$:

ค. $\frac{4 v_{0} l}{\pi^{2} a} \sum_{k=1}^{\infty} \frac{1}{k^{2}} \sin \frac{\pi k c}{l} \sin \frac{\pi k \delta}{l} \sin \frac{\pi k a t}{l} \sin \frac{\pi k x}{l}$:
L. $\frac{8 \varepsilon l}{\pi^{2}} \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2 k+1)^{2}} \sin \frac{\pi(2 k+1) x}{2 l} \cos \frac{\pi(2 k+1) a t}{2 l}$:
ıu. $t+\frac{l}{2}-\frac{4 l}{\pi^{2}} \sum_{k=0}^{\infty} \frac{1}{(2+1) k^{2}} \cos \frac{\pi(2 k+1) x}{l} \cos \frac{\pi(2 k+1) a t}{l}$:
o. $\frac{2 h}{a} \sum_{k=1}^{\infty} \frac{\sqrt{h^{2}+\lambda_{k}^{2}}}{\lambda_{k}^{2}\left(l\left(h^{2}+\lambda_{k}^{2}\right)+h\right)} \sin a \lambda_{k} t \cos \lambda_{k} x, \quad$ nnuntin $\lambda_{k}-n \square$

4. $\quad \sum_{k=1}^{\infty} \frac{4 h}{\lambda_{k} l\left(h^{2}+\lambda_{k}^{2}\right)+2 h \lambda_{k}} \cos a \lambda_{k} t\left(\lambda_{k} \cos \lambda_{k} x+h \sin \lambda_{k} x\right)$,

h. $\quad \frac{2 h}{a} \sum_{k=1}^{\infty} \frac{\sqrt{h^{2}+\lambda_{k}^{2}}}{\lambda_{k}^{2}\left(l\left(h^{2}+\lambda_{k}^{2}\right)+h\right)} \sin a \lambda_{k} i \cos \lambda_{k} x$, nnuntin $\lambda_{k}-\mathrm{n} \square$

ठ. $\quad-\frac{2}{a} \sum_{k=1}^{\infty}\left(\lambda_{k}+l h\right) \frac{\sqrt{h^{2}+\lambda_{k}^{2}}}{\lambda_{k}^{2}} \sin a \lambda_{k} t \sin \lambda_{k} x$, nnunt $\eta \quad \lambda_{k}-\mathrm{n} \square$

ก. $\frac{1}{l} \int_{0}^{l}(\varphi(x)+t \psi(x)) d x+$

$$
+\sum_{k=1}^{\infty}\left(a_{k} \cos \frac{a k \pi t}{l}+b_{k} \sin \frac{a k \pi t}{l}\right) \cos \frac{\pi k x}{l}
$$

$$
a_{k}=\frac{2}{l} \int_{0}^{l} \varphi(x) \cos \frac{\pi k x}{l} d x, b_{k}=\frac{2}{a \pi k} \int_{0}^{l} \psi(x) \cos \frac{\pi k x}{l} d x:
$$

б. $\sum_{k=1}^{\infty}\left(a_{k} \cos a \lambda_{k} t+b_{k} \sin a \lambda_{k} t\right)\left(\lambda_{k} \cos \lambda_{k} x+h \sin \lambda_{k} x\right)$,
$a_{k}=\frac{1}{\left\|\Psi_{k}(x)\right\|^{2}} \int_{0}^{l}\left(\lambda_{k} \cos \lambda_{k} x+h \sin \lambda_{k} x\right) \varphi(x) d x$,
$b_{k}=\frac{1}{a \lambda_{k}\left\|\Psi_{k}(x)\right\|^{2}} \int_{0}^{l}\left(\lambda_{k} \cos \lambda_{k} x+h \sin \lambda_{k} x\right) \psi(x) d x$,
$\left\|\Psi_{k}(x)\right\|^{2}=\int_{0}^{l}\left(\lambda_{k} \cos \lambda_{k} x+h \sin \lambda_{k} x\right)^{2} d x=\frac{l\left(h^{2}+\lambda_{k}^{2}\right)+h}{2}$,

U. $\sum_{k=1}^{\infty}\left(a_{k} \cos a \lambda_{k} t+b_{k} \sin a \lambda_{k} t\right) \cos \lambda_{k} x$,
$a_{k}=\frac{1}{\left\|\Psi_{k}(x)\right\|^{2}} \int_{0}^{l} \cos \lambda_{k} x \varphi(x) d x$,
$b_{k}=\frac{1}{a \lambda_{k}\left\|\Psi_{k}(x)\right\|^{2}} \int_{0}^{l} \cos \lambda_{k} x \psi^{\prime}(x) d x$,
$\left\|\Psi_{k}(x)\right\|^{2}=\int_{0}^{l} \cos ^{2} \lambda_{k} x d x=\frac{l}{2}\left(1+\frac{h}{l\left(h^{2}+\lambda_{k}^{2}\right)}\right)$,

נ.Stu huegnnt fuinnh umenuufuwig, ninntin uting t intinunntil $h_{1}=h_{2}$:
đ. $\sum_{k=1}^{\infty}\left(a_{k} \cos a \lambda_{k} t+b_{k} \sin a \lambda_{k} t\right) \sin \left(\lambda_{k} x+\varphi_{n}\right)$,
$\varphi_{n}=\operatorname{arctg} \frac{\lambda_{n}}{h_{1}}, a_{k}=\frac{1}{\left\|\Psi_{k}(x)\right\|^{2}} \int_{0}^{l} \sin \left(\lambda_{k} x+\varphi_{n}\right) \varphi(x) d x$,
$b_{k}=\frac{1}{a \lambda_{k}\left\|\Psi_{k}(x)\right\|^{2}} \int_{0}^{l} \sin \left(\lambda_{k} x+\varphi_{n}\right) \psi(x) d x$,

$$
\begin{aligned}
&\left\|\Psi_{k}(x)\right\|^{2}= \int_{0}^{l} \\
& \sin ^{2}\left(\lambda_{k} x+\varphi_{n}\right) d x= \\
&=\frac{1}{2}\left(l+\frac{\left(\lambda_{k}^{2}+h_{1} h_{2}\right)\left(h_{1}+h_{2}\right)}{\left(\lambda_{k}^{2}+h_{1}^{2}\right)\left(\lambda_{k}^{2}+h_{2}^{2}\right)}\right)
\end{aligned}
$$

 tif:
2. $\sum_{k=1}^{\infty}\left(a_{k} \cos a \lambda_{k} t+b_{k} \sin a \lambda_{k} t\right) \sin \lambda_{k} x$,
$a_{k}=\frac{1}{\left\|\Psi_{k}(x)\right\|^{2}} \int_{0}^{l} \sin \lambda_{k} x \varphi(x) d x$,
$b_{k}=\frac{1}{a \lambda_{k}\left\|\Psi_{k}(x)\right\|^{2}} \int_{0}^{l} \sin \lambda_{k} x \psi(x) d x$,
$\left\|\Psi_{k}(x)\right\|^{2}=\int_{0}^{l} \sin ^{2} \lambda_{k} x d x=\frac{l\left(h^{2}+\lambda_{k}^{2}\right)+h}{2\left(h^{2}+\lambda_{k}^{2}\right)}$,

(wahmsumatn tanmjha u्m

n. $\frac{H x-8 h l}{\pi^{2}} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)^{2}} \sin \frac{\pi(2 k+1) x}{2 l} \cos \frac{\pi a(2 k+1) t}{2 l}$:
ε. Lnıơnıún thciuntil $u(x, t)=v(x, t)+w(x, t)$ untupnul, nnunnn $w(x, t)$

щ. 七рt $\omega \neq \omega_{n}=\frac{\pi n a}{l}, n=1,2, \cdots$, шщиш
$\frac{2 A \omega}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k}}{k \omega_{k}} \sin \omega_{k} t \sin \frac{\pi k x}{l}+\frac{A x}{l} \sin \omega t+$
$+\frac{2 A \omega^{2}}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k \omega_{k}\left(\omega_{k}^{2}-\omega^{2}\right)}\left(\omega_{k} \sin \omega t-\omega \sin \omega_{k} i\right) \sin \frac{\pi k x}{l}$,
tipt $\omega=\omega_{n_{0}}=\frac{\pi n_{0} a}{l}$, шщш
$\frac{2 A \omega}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k}}{k \omega_{k}} \sin \omega_{k} t \sin \frac{\pi k x}{l}+\frac{A x}{l} \sin \omega t+$
$+\frac{2 A \omega^{2}}{\pi} \sum_{\substack{k=1 \\ k \neq n_{0}}}^{\infty} \frac{(-1)^{k+1}}{k \omega_{k}\left(\omega_{k}^{2}-\omega^{2}\right)}\left(\omega_{n} \sin \omega t-\omega \sin \omega_{k} t\right) \sin \frac{\pi k x}{l}+$
$+\frac{A}{\pi n_{0}}(-1)^{n_{0}}(\omega t \cos \omega t-\sin \omega t) \sin \frac{\pi n_{0} x}{l}:$
2. $\frac{A a}{\operatorname{sh} \frac{l}{a}} e^{-t} \operatorname{ch} \frac{x}{a}$: Lnıơnıun फׂaunntı $u(x, t)=v(x, t)+e^{-t} f(x)$ untupnu:
n. Lnıơnứu haciuntu $u(x, t)=v(x, t)+w(x, t)$ untupnu. nnintin $w(x, t)=\frac{(g(x-l)-1) \mu(t)+(1+h x) \nu(t)}{g+h(1+l g)}:$
 $w(x, t)=(x-l) \mu(t)+\nu(t):$
4. $A x t^{m}+\sum_{k=0}^{\infty} u_{k}(t) \sin \frac{\pi(2 k+1) x}{2 l}$,
$u_{k}(t)=\frac{\alpha_{k}}{\omega_{k}} \int_{0}^{t} \tau^{m-2} \sin \omega_{k}(t-\tau) d \tau, \omega_{k}=\frac{\pi(2 k+1) a}{l}$,
$\alpha_{k}=-\frac{2 A}{(m-1)(m-2) l} \int_{0}^{l} x \sin \frac{\pi(2 k+1) x}{2 l} d x:$
 $w(x, t)=\left(1-\frac{x}{l}\right) \mu(t)+\frac{x}{l} \nu(t):$

141.

щ. $\frac{2 l^{2} h e^{-\nu t}}{\pi^{2} x_{0}\left(l-x_{0}\right)} \sum_{k=1}^{\infty} \frac{1}{k^{2}} \sin \frac{\pi k x_{0}}{l} \sin \frac{\pi k x}{l} \theta_{k}(t)$, nnuntin
$\theta_{k}(t)=\operatorname{ch} \omega_{k} t+\frac{\nu}{\omega_{k} t} \operatorname{sh} \omega_{k} t, \omega_{k}=\sqrt{\nu^{2}-\frac{a^{2} k^{2} \pi^{2}}{l^{2}}}, \operatorname{tpt} \frac{k \pi a}{l}<\nu$,
$\theta_{k}(t)=1+\nu t$, tpt $\frac{k \pi a}{l}=\nu$,
$\theta_{k}(t)=\cos \omega_{k} t+\frac{\nu}{\omega_{k} t} \sin \omega_{k} t, \omega_{k}=\sqrt{\frac{a^{2} k^{2} \pi^{2}}{l^{2}-\nu^{2}}}$, tet $\frac{k \pi a}{l}>\nu:$
p. $\frac{8 k l e^{-\nu t}}{\pi^{2}} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{2}} \sin \frac{\pi(2 n+1) x}{2 l} \theta_{n}(t)$,
nnustin $\theta_{n}(t)$ \$nıLiughwian nnnzuntut hasultu awfunnn fuannnus:
9. $a_{0}+b_{0} e^{-2 \nu t}+e^{-\nu t} \sum_{k=1}^{\infty} \theta_{k}(t) \cos \frac{\pi k x}{l}$, nnuntn
$\theta_{k}(t)=a_{k} \operatorname{ch} \omega_{k} t+b_{k} \operatorname{sh} \omega_{k} t, \omega_{k}=\sqrt{\nu^{2}-\frac{a^{2} k^{2} \pi^{2}}{l^{2}}}$, tipt $\frac{k \pi a}{l}<\nu$, $\theta_{k}(t)=a_{k}+b_{k} t$, tipt $\frac{k \pi a}{l}=\nu$,
$\theta_{k}(t)=a_{k} \cos \omega_{k} t+b_{k} \sin \omega_{k} t, \omega_{k}=\sqrt{\frac{a^{2} k^{2} \pi^{2}}{l^{2}-\nu^{2}}}$, tipt $\frac{k \pi a}{l}>\nu$,
$a_{k}=\frac{2}{l} \int_{0}^{l} \varphi(x) \cos \frac{\pi k x}{l} d x, k=1,2, \ldots$,
$b_{k} \omega_{k}-\nu a_{k}=\frac{2}{l} \int_{0}^{l} \psi \cos \frac{\pi k x}{l} d x, k=1,2, \ldots$,
$b_{0}=\frac{1}{2 \nu l} \int_{0}^{l} \psi(x) d x, a_{0}=\frac{1}{l} \int_{0}^{l} \phi(x) d x+\frac{1}{2 \nu l} \int_{0}^{l} \psi(x) d x:$
ท $e^{-\nu t} \sum_{k=1}^{\infty} \theta_{k}(t) \cos \lambda_{k} x$, nnuntn
$\theta_{k}(t)=a_{k} \operatorname{ch} \omega_{k} t+b_{k} \operatorname{sh} \omega_{k} t, \omega_{k}=\sqrt{\nu^{2}-\lambda_{k}^{2} a^{2}}$, tpt $a \lambda_{k}<\nu$,
$\theta_{k}(t)=a_{k}+b_{k} t$, tpt $a \lambda_{k}=\nu$,
$\theta_{k}(t)=a_{k} \cos \omega_{k} t+b_{k} \sin \omega_{k} t, \omega_{k}=\sqrt{a^{2} \lambda_{k}^{2}-\nu^{2}}$, tpt $a \lambda_{k}>\nu$,
$a_{k}=\frac{2}{l\left(1+\frac{h}{l\left(\lambda_{k}^{2}+h^{2}\right)}\right)} \int_{0}^{l} \varphi(x) \cos \lambda_{k} x d x$,
$b_{k} \omega_{k}-\nu a_{k}=\frac{2}{l\left(1+\frac{h}{l\left(\lambda_{k}^{2}+h^{2}\right)}\right)} \int_{0}^{l} \psi \cos \lambda_{k} x d x$,

t. $e^{-\nu t} \sum_{k=1}^{\infty} \theta_{k}(t) \sin \left(\lambda_{k} x+\varphi_{n}\right) \quad\left(\varphi_{n}=\operatorname{arctg} \frac{\lambda_{k}}{h_{1}}\right)$,

$a_{k}=\frac{2}{\left(l+\frac{\left(\lambda_{k}^{2}+h_{1} h_{2}\right)\left(h_{1}+h_{2}\right)}{\left(\lambda_{k}^{2}+h_{1}^{2}\right)\left(\lambda_{k}^{2}+h_{2}^{2}\right)}\right)} \int_{0}^{l} \varphi(x) \sin \left(\lambda_{k} x+\varphi_{k}\right) d x$,
$i_{1} \omega_{k}-\nu a_{k}=\frac{2}{\left(l+\frac{\left(\lambda_{k}^{2}+h_{1} h_{2}\right)\left(h_{1}+h_{2}\right)}{\left(\lambda_{k}^{2}+h_{1}^{2}\right)\left(\lambda_{k}^{2}+h_{2}^{2}\right)}\right)} \int_{0}^{l} \psi(x) \sin \left(\lambda_{k} x+\varphi_{k}\right) d x$, $k=1,2,3, \cdots$:
$\mathrm{q} \cdot e^{-\nu t} \sum_{k=1}^{\infty}\left(a_{k} \cos q_{k} t+b_{k} \sin q_{k} t\right) \sin \frac{\pi k x}{l}, q_{k}=\sqrt{\frac{k^{2} \pi^{2} a^{2}}{l^{2}}-\nu^{2}}$,
$a_{k}=\frac{2}{l} \int_{0}^{l} \varphi(x) \sin \frac{\pi k x}{l} d x, \quad b_{k}=\frac{h}{q_{k}}+\frac{2}{l q_{k}} \int_{0}^{l} \psi(x) \sin \frac{\pi k x}{l} d x:$
t. $w(x, t)+e^{-\nu t} \sum_{n=0}^{\infty}\left(a_{n} \cos \frac{\pi(2 n+1) a t}{2 l}+\right.$

$$
\left.+b_{n} \sin \frac{\pi(2 n+1) a t}{2 l}\right) \sin \frac{\pi(2 n+1) x}{2 l}
$$

$a_{n}=-\frac{2}{l} \int_{0}^{l} w(x, 0) \sin \frac{\pi(2 n+1) x}{2 l} d x$,
$b_{n}=-\frac{4 \nu}{(2 n+1) \pi a l} \int_{0}^{l} w_{t}(x, 0) \sin \frac{\pi(2 n+1) x}{2 l} d x$,
$w(x, t)=\operatorname{Im}\left(\frac{A(\alpha-\beta i)}{\alpha^{2}+\beta^{2}} \frac{e^{(\alpha+\beta i) x}-e^{-(\alpha+\beta i) x}}{e^{(\alpha+\beta i) l}-e^{-(\alpha+\beta i) l}} e^{i \omega t}\right)$,
$\alpha+\beta i=\frac{\sqrt{\omega^{2}-2 \omega \nu i}}{a}:$
142.
w. $\frac{g x}{a^{2}}\left(l-\frac{x}{2}\right)+\sum_{n=0}^{\infty}\left(\frac{g l^{2}}{(2 n+1)^{3} \pi^{3}} \cos \frac{(2 n+1) \pi a t}{2 l}+\right.$

$$
\left.+\frac{2 v_{0} l^{2}}{(2 n+1)^{2} \pi^{2} a} \sin \frac{(2 n+1) \pi a t}{2 l}\right) \sin \frac{(2 n+1) \pi x}{2 l}:
$$

p. $\frac{1}{a \pi} \sum_{k=1}^{\infty}\left[\frac{1}{k} \int_{0}^{t} f_{k}(\xi) \sin \frac{k a \pi(t-\xi)}{l} d \xi\right] \cos \frac{\pi k x}{l}+$
$+\int_{0}^{t} \int_{0}^{\tau} f_{0}(\xi) d \xi d \tau, f_{0}(\xi)=\frac{1}{l} \int_{0}^{l} f(x, \xi) d x$,
$f_{k}(\xi)=\frac{2}{l} \int_{0}^{l} f(x, \xi) \cos \frac{\pi k x}{l} d x:$
9. $\frac{2 l}{a \pi} \sum_{k=0}^{\infty} \frac{1}{2 k+1}\left[\int_{0}^{t} \tau_{k}(\xi) \sin \frac{(2 k+1) a \pi(t-\xi)}{2 l} d \xi\right] \times$

$$
\times \sin \frac{(2 k+1) \pi x}{2 l}:
$$

ๆ. $\frac{1}{a^{2} l}\left[l \int_{0}^{x} d \xi \int_{0}^{\xi} \Phi(z) d z-x \int_{0}^{l} d \xi \int_{0}^{\xi} \Phi(z) d z\right] t+$

$$
+\sum_{n=1}^{\infty} b_{n} \sin \frac{\pi n x}{l} \sin \frac{\pi n a t}{l}
$$

$$
b_{n}=-\frac{2}{\pi n a^{3} l} \int_{0}^{l}\left[l \int_{0}^{x} d \xi \int_{0}^{\xi} \Phi(z) d z-\right.
$$

$$
\left.-x \int_{0}^{l} d \xi \int_{0}^{\xi} \Phi(z) d z\right] \sin \frac{\pi n x}{l} d x
$$

t. $\frac{1}{1+\left(\frac{a \pi}{l}\right)^{2}}\left(e^{-t}-\cos \frac{\pi a t}{l}+\frac{l}{a \pi} \sin \frac{\pi a t}{l}\right) \sin \frac{\pi x}{l}$:
q. $\begin{gathered}\left.\frac{4 l}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k\left(1+\left(\frac{\pi a k}{l}\right)^{2}\right.}\right)_{m}\left(e^{-t}-\cos \frac{\pi k a t}{l}+\frac{l}{k a \pi} \sin \frac{\pi a k t}{l}\right) \times \\ \times \sin \frac{\pi k x}{l}:\end{gathered}$

$$
\text { t. } \begin{aligned}
& \frac{1}{\pi} \sum_{k=0}^{\infty} \frac{\sin \frac{(2 k+1) \pi x}{2 l}}{(2 k+1)} \begin{aligned}
\left(\left(\frac{a \pi(2 k \mp 1)}{2 l}\right)^{2}-1\right)
\end{aligned} \\
& \times\left(\sin t-\frac{2 l}{a \pi(2 \vec{k}+1)} \sin \frac{a \pi(2 k+1)}{2 l}\right)
\end{aligned}
$$

ロ. $\left(e^{-t}-\cos t+\sin t\right) \cos \frac{x}{2}:$
ค. $u(x, t)=v(x)+w(x, t)+z(x, t)$,
$v(x)=\frac{k \sin k x}{\cos k l} \int_{0}^{l} \xi \cos k(l-\xi) d \xi-k \int_{0}^{x} \xi \sin k(x-\xi) d \xi$,
$w(x, t)=X(x) \sin \omega t=\frac{g}{2 \omega^{2}}\left[\frac{\cos \frac{\omega(l-x) \sqrt{2}}{2}}{\cos \frac{\omega l \sqrt{2}}{a}}-1\right] \sin \omega t$,
$z(x, t)=\sum_{n=0}^{\infty}\left(A_{n} \cos \omega_{n} t+B_{n} \sin \omega_{n} t\right) \sin \frac{\pi(2 n+1) x}{2 l}$,
$A_{n}=-\frac{2}{l} \int_{0}^{l} v(\xi) \sin \frac{\pi(2 n+1) \xi}{2 l} d \xi$,
$B_{n}=-\frac{2}{l \omega_{n}} \int_{0}^{l} X(\xi) \sin \frac{\pi(2 n+1) \xi}{2 l} d \xi$,
$\omega_{n}=-\sqrt{\omega^{2}-\frac{(2 n+1) \pi^{2} a^{2}}{4 l^{2}}}$:
d. $\sum_{n=1}^{\infty} u_{n}(t) \sin \frac{\pi n x}{l}, u_{n}(t)=\frac{\alpha_{n}}{\omega_{n}} \int_{0}^{t} \tau^{m} \sin \omega_{n}(t-\tau) d \tau$,
$\omega_{n}=\frac{\pi n a}{l}, \alpha_{n}=\frac{2}{l} \int_{0}^{l} \Phi(x) \sin \frac{\pi n x}{l} d x:$

1. Єр申и $\omega \neq \omega_{n}=\frac{\pi n a}{l}, n=1,2, \cdots$, шщиш
$\sum_{n=1}^{\infty} \frac{\Phi_{n}}{\omega_{n}^{2}-\omega^{2}}\left(\cos \omega t-\cos \omega_{n} t\right) \sin \frac{\pi n x}{l}:$
tpt $\omega \neq \omega_{n_{0}}=\frac{\pi n_{0} a}{l}, n=1,2, \cdots$, шщиш
$\sum_{\substack{n=1 \\ n \neq 0}}^{\infty} \frac{\Phi_{n}}{\omega_{n}^{2}-\omega^{2}}\left(\cos \omega t-\cos \omega_{n} t\right) \sin \frac{\pi n x}{l}+$
$+\frac{\Phi_{n_{0}} t \sin \omega t}{2 \omega} \sin \frac{\pi n_{0} x}{l}, \Phi_{n}=\frac{2}{l} \int_{0}^{l} \Phi(x) \sin \frac{\pi n x}{l} d x:$
|u. Ept $\omega \neq \omega_{n}=\frac{\pi n a}{l}, n=1,2,3, \cdots$, шщиш

$$
\sum_{n=1}^{\infty} \frac{\Phi_{n}}{\omega_{n}\left(\omega_{n}^{2}-\omega^{2}\right)}\left(\omega_{n} \sin \omega t-\omega \sin \omega_{n} t\right) \sin \frac{\pi n x}{l}:
$$

tpt $\omega=\omega_{n_{0}}=\frac{\pi n_{0} l}{a}$, шщиш

$$
\begin{aligned}
& \sum_{\substack{n=1 \\
n \neq 0}}^{\infty} \frac{\Phi_{n}}{\omega_{n}\left(\omega_{n}^{2}-\omega^{2}\right)}\left(\omega_{n} \sin \omega t-\omega \sin \omega_{n} t\right) \sin \frac{\pi n x}{l}+ \\
& +\frac{\Phi_{n_{0}}}{2 \omega_{n_{0}}^{2}}\left(\sin \omega_{n_{0}} t-\omega_{n_{0}} t \cos \omega_{n_{0}} t\right) \sin \frac{\pi n_{0} x}{l} \\
& \Phi_{n}=\frac{2}{l} \int_{0}^{l} \Phi(t) \sin \frac{\pi n t}{l} d t:
\end{aligned}
$$

4. $-\frac{g}{2 a^{2}}\left(x^{2}-l x\right)+\frac{2 l^{2}}{\pi^{2}} e^{-\nu t} \sum_{n=1}^{\infty}\left(\frac{h}{n^{2} x_{0}\left(l-x_{0}\right)} \sin \frac{\pi n x_{0}}{l}+\right.$

$$
\left.+\frac{g}{\pi n^{3} a^{2}}\left(-1+(-1)^{n}\right)\right)\left(\cos \omega_{n} t+\frac{\nu}{\omega_{n}} \sin \omega_{n} t\right) \sin \frac{\pi n x}{l}:
$$

h. $\sum_{n=1}^{\infty} u_{n}(t) \sin \frac{\pi n x}{l}, u_{n}(t)=\frac{\alpha_{n}}{\omega_{n}} \int_{0}^{t} \tau e^{-\nu(t-\tau)} \sin \omega_{n}^{*}(t-\tau) d \tau$,

$$
\alpha_{n}=\frac{2}{l} \int_{0}^{l} \Phi(z) \sin \frac{\pi n z}{l} d z, \omega_{n}=\frac{\pi n a}{l}, \omega_{n}^{*}=\sqrt{\omega_{n}^{2}-\nu^{2}}
$$

 amulh $\operatorname{sh} \omega_{n}^{*}$ intupny wanusatan:
ð. $u(x, t)=U(x, t)+e^{-\nu t} \sum_{n=1}^{\infty}\left(a_{n} \cos \frac{\pi n a t}{l}+b_{n} \sin \frac{\pi n a t}{l}\right) \times$

$$
\times \sin \frac{\pi n x}{l}, \quad a_{n}=-\frac{2}{l} \int_{0}^{l} U(z, 0) \sin \frac{\pi n z}{l} d z
$$

$$
b_{n}=\frac{\nu l}{n \pi a} a_{n}-\frac{2}{\pi n a} \int_{0}^{l} U_{t}(z, 0) \sin \frac{\pi n z}{l} d z
$$

$$
\begin{aligned}
& U(x, t)=\operatorname{Im}\left(\frac { \alpha - i \beta } { (\alpha ^ { 2 } + \beta ^ { 2 }) a ^ { 2 } } \left(\frac{X(x)}{X(l)} \int_{0}^{l} \Phi(\xi) X(l-\xi) d \xi-\right.\right. \\
& \left.\left.-e^{i \omega t} \int_{0}^{x} \Phi(\xi) X(x-\xi) d \xi\right)\right), \\
& X(x)=e^{(\alpha+i \beta) x}-e^{-(\alpha+i \beta) x}, \quad \alpha+i \beta=\frac{\sqrt{\omega^{2}-2 \omega \nu i}}{a}:
\end{aligned}
$$

 4eno dwun:

$$
\begin{aligned}
& \text { n. } \begin{aligned}
& u(x, t)=v(x, t)+w(x), \\
& v(x, t)=\sum_{k=1}^{\infty} a_{k} \cos \frac{k a \pi}{l} \sin \frac{\pi k x}{l} \\
& a_{k}=-\frac{2}{l} \int_{0}^{l} w(x) \sin \frac{\pi k x}{l} d x, \\
& w(x)=-\frac{1}{a^{2}} \int_{0}^{x} \int_{0}^{y} f(\xi) d \xi d y+ \\
& \quad+\frac{x}{l a^{2}} \int_{0}^{l} \int_{0}^{y} f(\xi) d \xi d y+\frac{\beta-\alpha}{l} x+\alpha:
\end{aligned}
\end{aligned}
$$

ช. $\frac{\beta-\alpha}{2 l} x^{2}+\alpha x+\Phi_{0}+\psi_{0} t+\frac{F_{0}}{2} t^{2}+$
$+\sum_{k=1}^{\infty}\left(\left(\frac{i}{a k \pi}\right)^{2} F_{k}+\left(\Phi_{k}-\left(\frac{l}{a k \pi}\right)^{2} F_{k}\right) \cos \frac{a k \pi t}{l}+\right.$
$\left.+\frac{l \psi_{k}}{a k \pi}\right) \cos \frac{\pi k x}{l}$,
$F_{k}=\frac{\varepsilon_{k}}{l} \int_{0}^{l}\left[f(x)-\frac{(\beta-\alpha) x^{2}}{2 l}\right] \cos \frac{\pi k x}{l} d x$,
$\Phi_{k}=\frac{\varepsilon_{k}}{l} \int_{0}^{l}\left[\varphi(x)-\frac{(\beta-\alpha) x^{2}}{2 l}-\alpha x\right] \cos \frac{\pi k x}{l} d x$,
$\psi_{k}=\frac{\varepsilon_{k}}{l} \int_{0}^{l} \psi(x) \cos \frac{\pi k x}{l} d x$,
$\varepsilon_{0}=1, \varepsilon_{k}=2, k=1,2, \cdots$.

ひ. $w(x)+\sum_{k=1}^{\infty}\left(a_{k} \cos a \lambda_{k} t+b_{k} \sin a \lambda_{k} t\right)\left(\lambda_{k} \cos \lambda_{k} x+h \sin \lambda_{k} x\right)$, $w(x)=-\frac{1}{a^{2}} \int_{0}^{x} \int_{0}^{y} f(\xi) d y+$ $+\left(\beta-\alpha l+\frac{1}{a^{2}} \int_{0}^{l} \int_{0}^{y} f(\xi) d \xi d y\right) \frac{1+h x}{1+h l}+\alpha x$

$$
a_{k}=\frac{2}{h+l\left(h^{2}+\lambda_{k}^{2}\right)} \int_{0}^{l}(\varphi(x)-w(x)) \times
$$

$\times\left(\lambda_{k} \cos \lambda_{k} x+h \sin \lambda_{k} x\right) d x$,

$$
b_{k}=\frac{2}{a \lambda_{k}\left(h+l\left(h^{2}+\lambda_{k}^{2}\right)\right)} \int_{0}^{l} \psi(x)\left(\lambda_{k} \cos \lambda_{k} x+h \sin \lambda_{k} x\right) d x
$$

nnuntin $\lambda_{k}-n _$htg $\lambda l=-\lambda$ hwч
ر. $w(x)-2 \sum_{k=1}^{\infty}\left[\frac{h^{2}+\lambda_{k}^{2}}{h+l\left(h^{2}+\lambda_{k}^{2}\right)} \int_{0}^{l} w(\xi) \cos \lambda_{k} \xi d \xi\right] \times$ $\times \cos a \lambda_{k} t \cos \lambda_{k} x$,

$$
\begin{aligned}
& w(x)=-\frac{1}{a^{2}} \int_{0}^{x} \int_{0}^{y} f(\xi) d \xi d y+\frac{\beta-\alpha}{h}-\alpha(l-x)+ \\
& +\frac{1}{a^{2}} \int_{0}^{l} \int_{0}^{y} f(\xi) d \xi d y+\frac{1}{a^{2} h} \int_{0}^{l} f(\xi) d \xi
\end{aligned}
$$

a. Lntonnúu hainntal $u(x, t)=v(x, t)+w(x . t)$ intugnप $L v(x, t)$
 nhn:

$$
w(x, t)=\left(1-\frac{h x}{1+l h}\right) \mu(t)+\frac{x}{1+l h} \nu(t):
$$

2. Lntónsúa بheinntil $u(x, t)=v(x, t)+w(x, t)$ intupnul $4 v(x, t)$
 ŋhn:

$$
w(x, t)=-\frac{1}{h} \mu(t)+\left(x+\frac{1}{h}\right) \nu(t):
$$

n. $\frac{t}{2}-\left(\frac{1}{4}+\cos \frac{2}{a}\right) x \sin 2 t$:

Lncơncưn ५haunptal $u(x, t)=v(x, t)+f(x) \sin 2 t$ intupnu:
2. $2 x t+\left(2 e^{t}-e^{-t}-3 t e^{-t}\right) \cos x$:
u. $x t+\left(2 e^{t}-e^{2 t}\right) e^{-x} \sin x$:

143.

w. $\frac{16 A l_{1}^{2} l_{2}^{2}}{\pi^{6}} \sum_{m, n=0}^{\infty} \frac{\sin \frac{(2 m+1) \pi x}{l_{1}} \sin \frac{(2 n+1) \pi y}{l_{1}}}{(2 m+1)^{3}(2 n+1)^{3}} \times$

$$
\times \cos \pi a t \sqrt{\frac{(2 m+1)^{2}}{l_{1}}+\frac{(2 n+1)^{2}}{l_{2}}}:
$$

F. $\frac{16 A l_{1}^{2} l_{2}^{2}}{\pi^{7} a} \sum_{m, n=0}^{\infty} \frac{\sin \frac{(2 m+1) \pi x}{l_{1}} \sin \frac{(2 n+1) \pi y}{l_{1}}}{(2 m+1)^{3}(2 n+1)^{3}} \times$

$$
\times \frac{\sin \pi a t \sqrt{\frac{(2 m+1)^{2}}{l_{1}}+\frac{(2 n+1)^{2}}{l_{2}}}}{\sqrt{\frac{(2 m+1)^{2}}{l_{1}}+\frac{(2 n+1)^{2}}{l_{2}}}}:
$$

9. $\cos \frac{\sqrt{s^{2}+p^{2}} a \pi t}{s p} \sin \frac{\pi x}{s} \sin \frac{\pi y}{p}$:

ๆ. $\frac{64 A s p}{\pi^{4}} \sum_{k, n=0}^{\infty}(-1)^{k+n} \frac{\sin \frac{(2 k+1) \pi x}{2 s} \sin \frac{(2 n+1) \pi y}{2 p}}{(2 k+1)^{2}(2 n+1)^{2}} \times$

$$
\times \cos \pi a t \sqrt{\frac{(2 k+1)^{2}}{4 s^{2}}+\frac{(2 n+1)^{2}}{4 p^{2}}}:
$$

t. $3 \cos \sqrt{5} t \sin x \sin 2 y+\sin 5 t \sin 3 x \sin 4 y$:
q. $\sum_{m, n=0}^{\infty} A_{m n}\left(\sin \omega t-\frac{\omega}{\omega_{m n}} \sin \omega_{m n} t\right) \sin \frac{m \pi x}{l_{1}} \sin \frac{n \pi y}{l_{2}}$.
$\begin{aligned} A_{m n} & =\frac{4}{l_{1} l_{2}\left(\omega_{m n}^{2}-\omega^{2}\right)} \int_{0}^{l_{1}} d x \int_{0}^{l_{2}} A(x, y) \sin \frac{m \pi x}{l_{1}} \sin \frac{n \pi y}{l_{2}} d y, \\ \omega_{m n} & =\pi a \sqrt{\frac{m^{2}}{l_{1}^{2}}+\frac{n^{2}}{l_{2}^{2}}}:\end{aligned}$
t. $\sin \frac{2 \pi y}{p} \sum_{k=1}^{\infty} a_{k}\left(e^{-t}-\cos a \pi \omega_{k} t+\frac{1}{a \pi \omega_{k}} \sin a \pi \omega_{k} t\right) \sin \frac{\pi k x}{s}$,

$$
a_{k}=\frac{(-1)^{k+1} 2 s}{\pi \rho k\left(1+a^{2} \pi^{2} \omega_{k}\right)}, \omega_{k}=\sqrt{\frac{k^{2}}{s^{2}}+\frac{4}{p^{2}}}:
$$

n. $u(r, t)=\left(\frac{2 a \varepsilon\left(\frac{\omega}{a} \cos \frac{\omega}{a} r_{2}-\frac{1}{r_{2}} \sin \frac{\omega}{a} r_{2}\right)}{\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right) \cos \frac{\omega}{a}\left(r_{1}-r_{2}\right)} \frac{\cos \frac{\omega}{a} r}{r}+\right.$

$$
\left.+\frac{2 a \varepsilon\left(\frac{\omega}{a} \sin \frac{\omega}{a} r_{2}+\frac{1}{r_{2}} \cos \frac{\omega}{a} r_{2}\right)}{\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right) \cos \frac{\omega}{a}\left(r_{1}-r_{2}\right)} \frac{\sin \frac{\omega}{a} r}{r}\right) \cos \omega t:
$$

Lntơnıun 4hiunntıl $R(r) \cos \omega t$ intupnu:
ค. $u(r, t)=\sum_{n=1}^{\infty} A_{n} \frac{\cos \lambda_{n} r+\gamma_{n} \sin \lambda_{n} r}{r} \sin a \lambda_{n} t$,

$$
\lambda_{n}=(2 n+1) \frac{\pi}{2\left(r_{2}-r_{1}\right)}, \quad \gamma_{n}=\frac{\lambda_{n} \sin \lambda_{n} r_{2}+\frac{1}{r_{2}} \cos \lambda_{n} r_{2}}{\lambda_{n} \cos \lambda+n r_{2}-\frac{1}{r_{2}} \sin \lambda_{n} r_{2}}
$$

$$
A_{n}=-\frac{a^{2}}{\rho_{0}} \int_{r 1}^{r_{2}} r f(r)\left(\cos \lambda_{n} r+\gamma_{n} \sin \lambda_{n} r\right) d r:
$$

144.

w. $\sum_{n=1}^{\infty} a_{n} e^{-\frac{n^{2} \pi^{2} a^{2} t}{l^{2}}} \sin \frac{\pi n x}{l}, a_{n}=\frac{2}{l} \int_{0}^{l} \varphi(x) \sin \frac{\pi n x}{l} d x$:

ค. $\frac{4 u_{0}}{\pi} \sum_{k=0}^{\infty} \frac{1}{2 k+1} e^{-\frac{(2 k+1)^{2} \pi^{2} a^{2} t}{l^{2}}} \sin \frac{(2 k+1) \pi x}{l}$:
9. $\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} e^{-\frac{n^{2} \pi^{2} a^{2} l_{i}}{l^{2}}} \cos \frac{\pi n x}{l}, a_{n}=\frac{2}{l} \int_{0}^{l} \varphi(x) \cos \frac{\pi n x}{l} d x$:

ก. $u(x, t)=w(x)+v(x, t)$,

$$
w(x)=H \frac{u_{2}-u_{1}}{2+l H} x+\frac{u_{2}+(1+l H) u_{1}}{2+l H}
$$

$$
\begin{aligned}
& v(x, t)=\sum_{n=1}^{\infty} a_{n} e^{-a^{2} \lambda_{n}^{2} t}\left(\cos \lambda_{n} x+\frac{H}{\lambda_{n}} \sin \lambda_{n} x\right), \\
& a_{n}=\frac{2 \lambda_{n}^{2}}{\left(\lambda_{n}^{2}+H^{2}\right) l+2 H} \int_{0}^{l}(\varphi(x)-w(x)) \times \\
& \times\left(\cos \lambda_{n} x+\frac{H}{\lambda_{n}} \sin \lambda_{n} x\right) d x,
\end{aligned}
$$ Yume misumation tia:

t. $\frac{16 l^{2}}{\pi^{3}} \sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{3}} e^{-\frac{(2 k+1)^{2} \pi^{2} a^{2} t}{l^{2}}} \sin \frac{(2 k+1) \pi x}{l}$:
q. $\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n}\left(\left(u_{0}-u_{1}\right)\left(1-(-1)^{n}\right)+(-1)^{n+1}\left(u_{1}-u_{2}\right)\right) \times$:

$$
\times e^{-\frac{n^{2} \pi^{2} a^{2} t}{l^{2}}} \sin \frac{n \pi x}{l}+u_{1}+\left(u_{2}-u_{1}\right) \frac{x}{l}:
$$

t. $Q_{0} x+U_{0}+\sum_{n=0}^{\infty}\left[a_{n}-\frac{4}{\pi^{2}} \frac{(2 n+1) \pi U_{0}+l Q_{0}}{(2 n+1)^{2}}\right] \times$
$\times e^{-\frac{(2 n+1)^{2} \pi^{2} a^{2} t}{4 l^{2}}} \sin \frac{(2 n+1) \pi x}{2 l}$,
$a_{n}=\frac{2}{l} \int_{0}^{l} \varphi(z) \sin \frac{(2 n+1) \pi z}{2 l} d z:$
n. $u_{0}-\frac{4 u_{0}}{\pi} \sum_{k=0}^{\infty} \frac{1}{2 k+1} e^{-\frac{(2 k+1)^{2} \pi^{2} a^{2} t}{4 l^{2}}} \sin \frac{(2 k+1) \pi x}{2 l}$,

ค. $Q\left[\frac{a^{2} t}{l}+\frac{3 x^{2}-l^{2}}{6 l}+\frac{2 l}{\pi^{2}} \sum_{k=1}^{\infty}(-1)^{k+1} \frac{\cos \frac{\pi k x}{l}}{k^{2}} e^{-\frac{k^{2} \pi^{2} a^{2} t}{l^{2}}}\right]$:
d. $\frac{A}{l} x t+\frac{A x}{6 a^{2} l}\left(x^{2}-l^{2}\right)+v(x, t)$,
$v(x, t)=\sum_{n=1}^{\infty} a_{n} e^{-\frac{n^{2} \pi^{2} a^{2} t}{1^{2}}} \sin \frac{n \pi x}{l}$,
$a_{n}=-\frac{A}{3 a^{2} l^{2}} \int_{0}^{l} x\left(x^{2}-l^{2}\right) \sin \frac{\pi n x}{l} d x:$
h. $q x+\frac{(A-q) l}{2}-\frac{4 l(A-q)}{\pi^{2}} \sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}} e^{-\frac{(2 k+1)^{2} \pi^{2} a^{2} t}{1^{2}}} \times$
$\times \cos \frac{(2 k+1) \pi x}{l}:$
L. $\frac{a A}{\cos \frac{l}{a}} e^{-t} \sin \frac{x}{a}+\frac{2}{l} \sum_{k=0}^{\infty}\left[\frac{T}{\omega_{k}}+\frac{(-1)^{k} A a^{2}}{1-a^{2} \omega_{k}^{2}}\right] \times$
$\times e^{-a^{2} \omega_{k}^{2} t} \sin \omega_{k} x, \omega_{k}=\frac{(2 k+1) \pi}{2 l}, \omega_{k} \neq \frac{1}{a}, k=0,1, \cdots$.
Lnıónứn 4Giunptıl $u(x, t)=f(x) e^{-t}+v(x, t)$ intupnu:
fu. $\frac{A x}{l} \cos \omega t+\frac{2 A \omega}{\pi} \sum_{n=1}^{\infty} \sin \frac{\pi n x}{l} \frac{(-1)^{n+1}}{n\left(\omega^{2}+\omega_{n}^{2}\right)} \times$
$\times\left(\omega_{n} \sin \omega t-\omega \cos \omega t+\omega e^{-\omega_{n} t}\right)+\sum_{n=1}^{\infty} a_{n} \sin \frac{\pi n x}{l} e^{-\omega_{n} l}$,
$\omega_{n}=\frac{\pi^{2} n^{2} a^{2}}{l^{2}}, a_{n}=\frac{2}{l} \int_{0}^{l}\left(\varphi(x)-\frac{A x}{l}\right) \sin \frac{\pi n x}{l} d x:$
o. $\frac{A x^{2}}{2 l} \cos \omega t+\sum_{n=0}^{\infty} a_{n} \sin \frac{(2 n+1) \pi x}{2 l} e^{-\omega t}+$

$$
+\sum_{n=0}^{\infty} w_{n}(t) \sin \frac{(2 n+1) \pi x}{2 l},
$$

$a_{n}=\frac{2}{l} \int_{0}^{l}\left(\varphi(x)-\frac{A x^{2}}{2 l}\right) \sin \frac{(2 n+1) \pi x}{2 l} d x$,
$W_{n}(t)=\frac{4 a^{2} A}{\pi l(2 n+1)\left(\omega^{2}+\omega_{n}^{2}\right)}\left(\omega_{n} \cos \omega t+\omega \sin \omega t\right)+$
$\left(\frac{8 A l(-1)^{n}}{\pi^{2}(2 n+1)^{2}}-\frac{16 A l}{\pi^{3}(2 n+1)^{3}}\right) \frac{\omega_{n} \sin \omega t-\omega \cos \omega t}{\omega_{n}^{2}+\omega^{2}}+$
$+C_{n} e^{-\omega_{n} t}, C_{n}=\frac{\omega}{\omega^{2}+\omega_{n}^{2}}\left(\frac{8 A l(-1)^{n}}{\pi^{2}(2 n+1)^{2}}-\frac{16 A l}{\pi^{3}(2 n+1)^{3}}\right)-$
$-\frac{4 a^{2} A \omega_{n}}{\pi l(2 n+1)\left(\omega^{2}+\omega_{n}^{2}\right)}, \omega_{n}=\frac{a^{2} \pi^{2}(2 n+1)^{2}}{4 l^{2}}:$
4. $-\frac{a^{2} A}{2 l} t^{2}-\left(\frac{A}{2 l} x^{2}-A x+\frac{A l}{3}-\frac{a^{2} T}{l}\right) t+\frac{T}{2 l} x^{2}-$
$-\frac{l t}{6}+\frac{2 l}{a^{2} \pi^{4}} \sum_{k=1}^{\infty} \frac{1}{k^{4}}\left[A l^{2}-\left(A l^{2}+(-1)^{k} T(a k \pi)^{2}\right) \times\right.$ $\left.\times e^{-\left(\frac{a k \pi}{l}\right)^{2} t}\right] \cos \frac{\pi k x}{l}$:

145.

ш. $\int_{0}^{l} \varphi(\xi)\left[\frac{2}{l} \sum_{n=1}^{\infty} e^{-\frac{n^{2} \pi^{2} \sigma^{2} t}{l^{2}}} \sin \frac{\pi n x}{l} \sin \frac{\pi n \xi}{l}\right] d \xi+$

$$
+\int_{0}^{t} d \tau \int_{0}^{l} f(\xi, \tau)\left[\frac{2}{l} \sum_{n=1}^{\infty} e^{-\frac{n^{2} \pi^{2} a^{2}(t-\tau)}{l^{2}}} \sin \frac{\pi n x}{l} \sin \frac{\pi n \xi}{l}\right] d \xi:
$$

f. $\sin \frac{\pi x}{l} \int_{0}^{t} \Phi(\tau) e^{-\frac{\pi^{2} a^{2}(t-\tau)}{l^{2}}} d \tau+\sum_{n=1}^{\infty} a_{n} e^{-\frac{n^{2} \pi^{2} a^{2} t}{l^{2}}} \sin \frac{\pi n x}{l}$,

$$
a_{n}=\frac{2}{l} \int_{0}^{l} \varphi(x) \sin \frac{\pi n x}{l} d x
$$

q. $u(x, t)=v(x, t)+w(x, t)$,

$$
w(x, t)=\left(\alpha_{1} x+\beta_{1}\right) \psi_{1}(t)+\left(\alpha_{2} x+\beta_{2}\right) \psi_{2}(t)
$$

$$
\alpha_{1}=\frac{1}{2+h l}, \quad \beta_{1}=\frac{1+h l}{(2+h l) h}, \alpha_{2}=\frac{1}{2+h l}, \beta_{2}=\frac{1}{h(2+h l)},
$$

$$
v(x, t)=\sum_{n=1}^{\infty} v_{n}(t) X_{n}(x), X_{n}(x)=\cos \lambda_{n} x+\frac{h}{\lambda_{n}} \sin \lambda_{n} x
$$

 unsumnCitni tad.

$$
v_{n}(t)=\int_{0}^{t} e^{a^{2} \lambda_{n}^{2}(t-\tau)} \theta_{n}(\tau) d \tau+a_{n} e^{-a^{2} \lambda_{n}^{2} t}
$$

$$
\theta_{n}(t)=\frac{1}{\left\|X_{n}\right\|^{2}} \int_{0}^{l} f^{*}(z, t) X_{n}(z) d z
$$

$$
\begin{aligned}
& a_{n}=\frac{1}{\left\|X_{n}\right\|^{2}} \int_{0}^{l} \varphi^{*}(z) X_{n}(z) d z \\
& f^{*}(x, t)=f(x, t)-\left(\alpha_{1} x+\beta_{1}\right) \psi_{1}^{\prime}(t)-\left(\alpha_{2} x+\beta_{2}\right) \psi_{2}^{\prime}(t) \\
& \varphi^{*}(x)=\varphi(x)-\left(\alpha_{1} x+\beta_{1}\right) \psi_{1}(0)-\left(\alpha_{2} x+\beta_{2}\right) \psi_{2}(0), \\
& \left\|X_{n}(x)\right\|^{2}=\int_{0}^{l} X_{n}(x)^{2} d x=\frac{\left(\lambda_{n}^{2}+h^{2}\right) l+2 h}{2 \lambda_{n}^{2}}: \\
& \text { n. } w(x)+\sum_{k=0}^{\infty} a_{k} e^{-\frac{(2 k+1)^{2} a^{2} \pi^{2} t}{4 l^{2}}} \sin \frac{(2 k+1) \pi x}{2 l}, \\
& a_{k}=\frac{2}{l} \int_{0}^{l}(\varphi(x)-w(x)) \sin \frac{(2 k+1) \pi x}{2 l} d x, \\
& w(x)=-\frac{1}{a^{2}} \int_{0}^{x}\left(\int_{0}^{y} f(\xi) d \xi\right) d y+\frac{x}{a^{2}} \int_{0}^{l} f(\xi) d \xi+q x:
\end{aligned}
$$

146.

m. $\sin \frac{\pi x}{2 l} e^{\left(\frac{a^{2} \pi^{2}}{4 l^{2}}+\beta\right) t}:$
f. $u(x, t)=u_{0}+w(x)+v(x, t)$,

$$
w(x)=-u_{0} \frac{\operatorname{sh} \frac{\sqrt{h}(l-x)}{a}+\operatorname{sh} \frac{\sqrt{h} x}{a}}{\operatorname{sh} \frac{\sqrt{h} l}{a}}
$$

$v(x, t)=-\frac{4 h l^{2} u_{0}}{\pi a^{2}} \sum_{k=1}^{\infty} \frac{\sin \frac{(2 k-1) \pi x}{l} e^{\left[\frac{(2 k-1)^{2} \pi^{2} a^{2}}{L^{2}}+h\right] t}}{(2 k-1)\left[(2 k-1)^{2} \pi^{2} a^{2}+h l^{2}\right]}:$
q. $u(x, t)=w(x)+v(x, t)$,

$$
\begin{aligned}
& v(x, t)=\sum_{n=1}^{\infty} a_{n} e^{-\left(a^{2} \lambda_{n}^{2}+h\right) t}\left(\cos \lambda_{n} x+\frac{H}{\lambda_{n}} \sin \lambda_{n} x\right), \\
& w(x)=H \frac{\left[u_{2} \frac{\sqrt{h}}{a}-u_{1}\left(H \sin \frac{\sqrt{h} l}{a}-\frac{\sqrt{h}}{a} \operatorname{ch} \frac{\sqrt{h} l}{a}\right)\right] \operatorname{ch} \frac{\sqrt{h} x}{a}}{\left(H^{2}+\frac{h}{a^{2}}\right) \operatorname{sh} \frac{\sqrt{h} l}{a}}+ \\
& +H \frac{\left[u_{2} H+u_{1}\left(H c h \frac{\sqrt{h} l}{a}+\frac{\sqrt{h}}{a} \operatorname{sh} \frac{\sqrt{h} l}{a}\right)\right] \operatorname{sh} \frac{\sqrt{h} x}{a}}{\left(H^{2}+\frac{h}{a^{2}}\right) \operatorname{sh} \frac{\sqrt{h} l}{a}},
\end{aligned}
$$

Lida mpsuencitana ta:
ก. $\frac{4}{\pi} \sum_{k=0}^{\infty} \frac{1}{2 k+1} e^{-\left(\frac{\pi^{2}(2 k+1)^{2}}{l^{2}}+1\right) t} \sin \frac{(2 k+1) \pi x}{l}$:
t. $-\frac{8}{\pi} \sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}} e^{-(2 k+1)^{2} t} \sin (2 k+1) x$:
q. $\frac{1}{2}\left(1-e^{-2 t}\right) \sin x$:
t. $e^{-\frac{3}{4} t} \sin \frac{x}{2}$:

ก. $u(x, t)=u_{0}+w(x)+v(x, t)$,

$$
\begin{aligned}
& w(x)=\frac{\left(u_{1}-u_{0}\right) \operatorname{sh} \frac{\sqrt{h}(l-x)}{a}+\left(u_{2}-u_{0}\right) \operatorname{sh} \frac{\sqrt{h} x}{a}}{\operatorname{sh} \frac{\sqrt{h} l}{a}} \\
& v(x, t)=\sum_{n=1}^{\infty} A_{n} e^{-\left(\frac{n^{2} \pi^{2} a^{2}}{l^{2}}+h\right) t} \sin \frac{\pi n x}{l} \\
& A_{n}=\frac{2}{l} \int_{0}^{l}\left(\varphi(x)-w(x)-u_{0}\right) \sin \frac{\pi n x}{l} d x: \\
& \text { ค. } u(x, t)=w(x)+v(x, t)
\end{aligned}
$$

$$
\frac{a}{\sqrt{h}} Q_{1} \operatorname{sh} \frac{\sqrt{h} x}{a}+\frac{Q_{2}-Q_{1} \operatorname{ch} \frac{\sqrt{h} l}{a}}{\frac{\sqrt{h}}{a} \operatorname{sh} \frac{\sqrt{h} l}{a}} \operatorname{ch} \frac{\sqrt{h} x}{a}
$$

$$
v(x, t)=\frac{a_{0}}{2} e^{-h t}+\sum_{n=1}^{\infty} a_{n} e^{-\left(\frac{n^{2} \pi^{2} a^{2}}{l^{2}}+h\right) t} \cos \frac{\pi n x}{l}
$$

$$
a_{n}=\frac{2}{l} \int_{0}^{l}(\varphi(x)-w(x)) \cos \frac{\pi n x}{l} d x
$$

$$
\text { д. } u(x, t)=u_{0}+e^{-h t} v(x, t)
$$

$$
\begin{aligned}
& a_{n}=\frac{2 \lambda_{n}^{2}}{\left(\lambda_{n}^{2}+H^{2}\right) l+2 H} \int_{0}^{l}(\varphi(x)-w(x)) \times \\
& \times\left(\cos \lambda_{n} x+\frac{H}{\lambda_{n}} \sin \lambda_{n} x\right) d x,
\end{aligned}
$$

$$
\begin{aligned}
& v(x, t)=\sum_{n=0}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) e^{-n^{2} a^{2} t}, \\
& a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\varphi(x)-u_{0}\right) d x, \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi}\left(f(x)-u_{0}\right) \cos n x d x, \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi}\left(f(x)-u_{0}\right) \sin n x d x: \\
& \text { h. } u_{0}+e^{-h t}\left(u_{1}-u_{0}\right) \text { : } \\
& \text { 1. } u(x, t)=v(x, t)+w(x, t) \text {, } \\
& w(x, t)=\left(\alpha_{1} x+\beta_{1}\right) \psi_{1}(t)+\left(\alpha_{2} x+\beta_{2}\right) \psi_{2}(t), \\
& \alpha_{1}=\frac{1}{2+h l}, \quad \beta_{1}=\frac{1+h l}{(2+h l) h}, \alpha_{2}=\frac{1}{2+h l}, \quad \beta_{2}=\frac{1}{h(2+h l)}, \\
& v(x, t)=\int_{0}^{t} d \tau \int_{0}^{l} f^{*}(z, \tau) G(x, z, t-\tau) d z+ \\
& +\int_{0}^{l} \varphi^{*}(z) G(x, z, t) d z, \\
& G(x, z, t-\tau)=\sum_{n=1}^{\infty} e^{-\left(a^{2} \lambda_{n}^{2}+h\right)(t-\tau)} \frac{X_{n}(x) X_{n}(z)}{\left\|X_{n}\right\|^{2}} .
\end{aligned}
$$ mpưmuntitnc ta,

$$
\begin{aligned}
& \left\|X_{n}(x)\right\|^{2}=\int_{0}^{l} X_{n}(x)^{2} d x=\frac{\left(\lambda_{n}^{2}+h^{2}\right) l+2 h}{2 \lambda_{n}^{2}} \\
& f^{*}(x, t)=f(x, t)-h w(x, t)-\varphi_{t}(x, t) \\
& \varphi^{*}(x)=\varphi(x)-w(x, 0):
\end{aligned}
$$

|u. $x t+\sin (\pi x) e^{x-t-\pi^{2} t}$:
б. $x+t \sin x+\frac{1}{8}\left(1-e^{-8 t}\right) \sin 3 x$:

147.

щ. $\frac{16 u_{0}}{\pi^{2}} \sum_{m, n=0}^{\infty} \frac{\sin \frac{(2 m+1) \pi x}{l} \sin \frac{(2 n+1) \pi y}{l}}{(2 m+1)(2 n+1)} \times$

$$
\times e^{-\frac{\Omega^{2} \pi^{2}}{t^{2}}\left((2 m+1)^{2}+(2 n+1)^{2}\right) t}:
$$

ค. $\sum_{k=0}^{\infty} \sum_{n=1}^{\infty} T_{k n}(t) \sin \frac{(2 k+1) \pi x}{2 p} \sin \frac{\pi n y}{s}$,
$T_{k n}(t)=\frac{4}{p s} \int_{0}^{t} e^{-a^{2} \omega_{k n}^{2}(t-\tau)} \int_{0}^{p} \int_{0}^{s} f(\xi, \eta, \tau) \times$
$\times \sin \frac{(2 k+1) \pi \xi}{2 p} \sin \frac{\pi n \eta}{s} d \xi d \eta d \tau$,
$\omega_{k n}^{2}=\frac{(2 k+1)^{2} \pi^{2}}{4 p^{2}}+\frac{\pi^{2} n^{2}}{s^{2}}:$
9. $B e^{-\frac{a^{2} \pi^{2}}{4}\left(\frac{1}{p^{2}}+\frac{9}{s^{2}}\right) t} \sin \frac{\pi x}{2 p} \cos \frac{3 \pi y}{2 s}+$

$$
+\frac{4 A}{a^{2} \pi^{2}\left(\frac{9}{p^{2}}+\frac{1}{s^{2}}\right)}\left(1-e^{-\frac{a^{2} \pi^{2}}{4}\left(\frac{9}{p^{2}}+\frac{1}{s^{2}}\right) t}\right) \sin \frac{3 \pi x}{2 p} \cos \frac{\pi y}{2 s}
$$

n. $\frac{A}{a^{2} \pi^{2}\left(\frac{1}{p^{2}}+\frac{1}{4 s^{2}}\right)-1}\left(e^{-t}-e^{-a^{2} \pi^{2}\left(\frac{1}{p^{2}}+\frac{1}{4 s^{2}}\right) t}\right) \times$

$$
\times \sin \frac{\pi x}{p} \sin \frac{\pi y}{2 s}
$$

t. $\sum_{k, n=1}^{\infty} a_{k n} e^{-a^{2} \omega_{k n}^{2} t} \sin \frac{\pi k x}{p} \sin \frac{\pi n y}{s}$,
$a_{k n}=\frac{4}{p s} \int_{0}^{p} \int_{0}^{s} \varphi(x, y) \sin \frac{\pi k x}{p} \sin \frac{\pi n y}{s} d x d y$,
$\omega_{k n}^{2}=\frac{\pi^{2} k^{2}}{p^{2}}+\frac{\pi^{2} n^{2}}{s^{2}}:$
q. $\sum_{k, n=1}^{\infty} a_{k n} e^{-a^{2} \omega_{k n}^{2} t} \sin \frac{\pi k y}{s} \cos \frac{\pi(2 n+1) x}{2 p}$,
$a_{k n}=\frac{4}{p s} \int_{0}^{p} \int_{0}^{s} \varphi(x, y) \sin \frac{\pi k y}{s} \cos \frac{\pi(2 n+1) x}{2 p} d x d y$,
$\omega_{k n}^{2}=\frac{\pi^{2} k^{2}}{s^{2}}+\frac{\pi^{2}(2 n+1)^{2}}{4 p^{2}}:$
t. $u(r, t)=\frac{2}{R r} \sum_{k=1}^{\infty} C_{k}(t) \sin \frac{\pi k r}{R}$.

$$
C_{k}(t)=\int_{0}^{t} e^{-\left(\frac{a k \pi}{R}\right)^{2}(t-\tau)} \int_{0}^{R} \xi f(\xi, \tau) \sin \frac{\pi k \xi}{R} d \xi d \tau:
$$

n. $U+\frac{Q}{6 k}\left(R^{2}-r^{2}\right)+\frac{2 R}{\pi r} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}\left(U-T-\frac{Q R R^{2}}{k \cdot n^{2} \pi^{2}}\right) \times$

$$
\times e^{-\left(\frac{a n \pi}{R}\right)^{2} t} \sin \frac{\pi n r}{R}, a^{2}=\frac{k}{x \rho}
$$

p. $u(r, t)=\sum_{n=1}^{\infty} A_{n} e^{-a^{2} \lambda_{n}^{2} t} \frac{\sin \lambda_{n} r}{r}$,
$A_{n}=\frac{2}{r_{0}} \frac{r_{0}^{2} \lambda_{n}^{2}+\left(r_{0} h-1\right)^{2}}{r_{0}^{2} \lambda_{n}^{2}+\left(r_{0} h-1\right) r_{0} h} \int_{0}^{r_{0}} r f(r) \sin \lambda_{n} r d r$,

d. $u(r, t)=\sum_{n=1}^{\infty} A_{n} e^{-\frac{n^{2} \pi^{2} a^{2} t}{r_{0}^{2}} \sin \frac{\pi n r}{r_{\theta}}} \frac{r}{r}$,

$$
A_{n}=\frac{2}{r_{0}} \int_{0}^{r_{0}} r f(r) \sin \frac{\pi n r}{r_{0}} d r
$$

h. $u_{1}+2 \frac{r_{0}}{\pi}\left(u_{0}-u_{1}\right) \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} e^{-\frac{n^{2} r^{2} a^{2} r^{2}}{r_{0}^{2}} \sin \frac{\pi n r}{r_{1,}}} \frac{r}{r}$:

เ. $u_{0}+\frac{q r_{0}}{\lambda}\left(\frac{3 a^{2} t}{r_{0}^{2}}-\frac{3 r_{0}^{2}-5 r^{2}}{10 r_{0}^{2}}-\right.$

$$
\left.-\sum_{n=1}^{\infty} \frac{2 r_{0}}{r \mu_{n}^{2} \cos \mu_{n i}} \sin \frac{\mu_{n_{2}} r}{r_{0}} r^{\frac{\mu^{2} \mu_{n}^{2}}{r_{1}^{2}}}\right)
$$

148.

$$
\begin{aligned}
& A_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(\varphi) \cos n \varphi d \varphi(n=0,1,2, \cdots) \\
& B_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(\varphi) \sin n \varphi d \varphi(n=1,2, \cdots)
\end{aligned}
$$

 $u(\rho, \varphi)=\int_{0}^{2 \pi} \frac{a^{2}-\rho^{2}}{a^{2}+\rho^{2}-2 a \rho \cos (\varphi-p s i)} f(\psi) d \psi:$
f. $A \frac{\rho}{a} \sin \varphi$:
q. $B+\frac{3 A}{a} \rho \sin \varphi-4 A\left(\frac{\rho}{a}\right)^{3} \sin 3 \varphi$:
n. $A \frac{\rho}{a} \sin \varphi-\frac{8 A}{\pi} \sum_{k=1}^{\infty}\left(\frac{\rho}{a}\right)^{2 k} \frac{\cos 2 k \varphi}{4 k^{2}-9}$:
t. $\frac{1}{2}\left(1+\rho^{2} \cos 2 \varphi\right)$:
q. $\frac{\rho}{4}\left(3 \sin \varphi-\rho^{2} \sin ^{3} \varphi\right)$:
t. $\frac{3}{8}+\frac{\rho^{2}}{2} \cos 2 \varphi+\frac{\rho^{4}}{8} \cos 4 \varphi$:
n. $\frac{5}{8}+\frac{3}{8} \rho^{4} \cos 4 \varphi$:

ค. $-1-\frac{\rho}{2 a} \cos \varphi+\frac{\pi \rho}{a} \sin \varphi+2 \sum_{k=2}^{\infty} \frac{1}{k^{2}-1}\left(\frac{\rho}{a}\right)^{k} \cos k \varphi$:
d. $C+\sum_{k=1}^{\infty} \rho^{k}\left(A_{k} \cos k \varphi+B_{k} \sin k \varphi\right)$,
$A_{k}=\frac{1}{\pi k a^{k-1}} \int_{0}^{2 \pi} f(\varphi) \cos k \varphi d \varphi, k=1,2, \cdots$.
$B_{k}=\frac{1}{\pi k a^{k-1}} \int_{0}^{2 \pi} f(\varphi) \sin k \varphi d \varphi, k=1,2, \cdots$,

h. $A \rho \cos \varphi+C$:

เ. $\frac{A}{2 a} \rho^{2} \cos 2 \varphi+C$:
fu. $\frac{1}{4}\left(3 \rho \sin \varphi-\frac{\rho^{3}}{3 a^{2}} \sin 3 \varphi\right)+C$:
б. $\sum_{n=1}^{\infty} \frac{\rho^{n}}{a^{n-1}(n-a h)}\left(A_{n} \cos n \varphi+B_{n} \sin n \varphi\right)-\frac{A_{0}}{2 h}$,

4. $\frac{T}{h}+\frac{Q \rho}{1+a h} \sin \varphi+\frac{U \rho^{3}}{a^{2}(3+a h)} \cos 3 \varphi$:
149.
ш. $u(\rho, \varphi)=\frac{A_{0}}{2}+\sum_{n=1}^{\infty}\left(\frac{a}{\rho}\right)^{n}\left(A_{n} \cos n \varphi+B_{n} \sin n \varphi\right), \rho<a$,

f. $A \frac{a}{\rho} \sin \varphi$:
9. $B+\frac{3 A a}{\rho} \sin \varphi-4 A\left(\frac{a}{\rho}\right)^{3} \sin 3 \varphi$:

ๆ. $A \frac{a}{\rho} \sin \varphi-\frac{8 A}{\pi} \sum_{k=1}^{\infty}\left(\frac{a}{\rho}\right)^{2 k} \frac{\cos 2 k \varphi}{4 k^{2}-9}$:
t. $\frac{2 T}{\pi}+\frac{4 T}{\pi} \sum_{k=1}^{\infty} \frac{1}{1-4 k^{2}}\left(\frac{a}{\rho}\right)^{k} \cos k \varphi$:
q. $\sum_{n=1}^{\infty} \frac{a^{n+1}}{n \rho^{n}}\left(A_{n} \cos n \varphi+B_{n} \sin n \varphi\right)+C$,
 ghwejh Snınhth qnnowulhgating tG:
t. $C+\frac{4 a^{2}}{3 \rho} \cos \varphi+\frac{a^{3}}{4 \rho^{2}} \cos 2 \varphi-\frac{\pi a^{3}}{\rho^{2}} \sin 2 \varphi+$
$+4 a \sum_{k=3}^{\infty} \frac{1}{4-k^{2}}\left(\frac{a}{\rho}\right)^{k} \cos k \varphi:$
n. $-\frac{A_{0}}{2 \pi h}-\frac{a}{\pi} \sum_{n=1}^{\infty} \frac{1}{n+h a}\left(\frac{a}{\rho}\right)^{k}\left(A_{n} \cos n \varphi+B_{n} \sin n \varphi\right)$,
$A_{n}=\int_{0}^{2 \pi} f(\varphi) \cos k \varphi d \varphi$,
$B_{n}=\int_{0}^{2 \pi} f(\varphi) \sin k \varphi d \varphi:$
ค. $\pi U-\frac{a U}{\rho} \sin \varphi+2 U \sum_{k=2}^{\infty} \frac{2 k^{2}-1}{k\left(1-k^{2}\right)}\left(\frac{a}{\rho}\right)^{k} \sin k \varphi$:

150.

u. $\sum_{n=1}^{\infty}\left[\left(A_{n} \rho^{n}+\frac{B_{n}}{\rho^{n}}\right) \cos n \varphi+\left(C_{n} \rho^{n}+\frac{D_{n}}{\rho^{n}}\right) \sin n \varphi\right]+$
$+B_{0} \ln \rho+A_{0}$,

$$
\begin{aligned}
& A_{n}=\frac{b^{n} F_{n}^{(1)}-a^{n} f_{n}^{(1)}}{b^{2 n}-a^{2 n}}, B_{n}=a^{n} b^{n} \frac{b^{n} f_{n}^{(1)}-a^{n} F_{n}^{(1)}}{b^{2 n}-a^{2 n}} \\
& C_{n}=\frac{b^{n} F_{n}^{(2)}-a^{n} f_{n}^{(2)}}{b^{2 n}-a^{2 n}}, D_{n}=a^{n} b^{n} \frac{b^{n} f_{n}^{(2)}-a^{n} F_{n}^{(2)}}{b^{2 n}-a^{2 n}} \\
& A_{0}=\frac{f_{0}^{(1)}-F_{0}^{(1)}}{\ln \frac{a}{b}}, B_{0}=\frac{F_{0}^{(1)} \ln a-f_{0}^{(1)} l n b}{\ln \frac{a}{b}}
\end{aligned}
$$

nnuntin $f_{n}^{(1)}, f_{n}^{(2)}, F_{n}^{(1)}, F_{n}^{(2)}$ putnp $f(\varphi)$ \& $F(\varphi)$ Pnialighmatinh Intnhth anndulingitantita:
F. $\frac{b}{b^{2}-a^{2}}\left(\rho-\frac{a^{2}}{\rho}\right) \cos \varphi$:
9. $A \frac{\ln \frac{\rho}{b}}{\ln \frac{a}{b}}+\frac{B b^{2}}{b^{4}-a^{4}}\left(\rho^{2}-\frac{a^{4}}{\rho^{2}}\right) \sin 2 \varphi$:

ๆ. $Q+\frac{a^{2} q}{a^{2}+b^{2}}\left(\rho-\frac{b^{2}}{\rho}\right) \cos \varphi+$

$$
+\frac{b^{2} T}{a^{4}+b^{4}}\left(\rho^{2}+\frac{a^{4}}{\rho^{2}}\right) \sin 2 \varphi:
$$

t. $T \frac{1+h b l n \frac{b}{\rho}}{1+h b \ln \frac{b}{a}}+a b U \frac{(1-h b) \frac{\rho}{b}+(1+h b) \frac{b}{\rho}}{b^{2}+a^{2}+h b\left(b^{2}-a^{2}\right)} \cos \varphi$:
q. $u_{1}+\frac{u_{2}-u_{1}}{\ln 2} \ln \rho$:
t. $\left(\frac{2}{3 \rho^{2}}-\frac{\rho^{2}}{6}\right) \cos 2 \varphi+\frac{3}{2}-\frac{\ln \rho}{\ln 2}$:
151.
ш. $\sum_{n=0}^{\infty} f_{n}\left(\frac{\rho}{a}\right)^{\frac{\pi n}{\alpha}} \sin \frac{\pi n}{\alpha} \varphi, f_{n}=\frac{2}{\alpha} \int_{0}^{\alpha} f(\varphi) \sin \frac{\pi n}{\alpha} \varphi d \varphi$:
F. $\frac{2 A \alpha}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}\left(\frac{\rho}{a}\right)^{\frac{\pi k}{\alpha}} \sin \frac{\pi k \cdot \varphi}{\alpha}$:
q. $\sum_{k=0}^{\infty} a_{k} \rho^{\frac{\pi(2 k+1)}{2 \alpha}} \cos \frac{(2 k+1) \pi \varphi}{2 \alpha}$,
$a_{k}=\frac{2}{\alpha} a^{-\frac{(2 k+1) \pi}{2 \alpha}} \int_{0}^{\alpha} f(\varphi) \cos \frac{(2 k+1) \pi}{2 \alpha} \varphi d \varphi$:
n. $\frac{\alpha U}{2}-\frac{4 \alpha U}{\pi^{2}} \sum_{k=1}^{\infty} \frac{1}{k^{2}}\left(\frac{\rho}{a}\right)^{\frac{\pi k}{\alpha}} \cos \frac{\pi k \varphi}{\alpha}$:
t. $\frac{4 \alpha Q a}{\pi^{2}} \sum_{k=1}^{\infty} \frac{1}{k^{2}}\left(\frac{\rho}{a}\right)^{\frac{\pi k}{\alpha}} \sin \frac{\pi k \varphi}{\alpha}$:
q. $2 a Q \sum_{k=1}^{\infty} \frac{\left(h^{2}+\lambda_{k}^{2}\right)\left(1-\cos \alpha \lambda_{k}\right)}{\lambda_{k}\left(\gamma a+\lambda_{k}\right)\left(1+\alpha\left(h^{2}+\lambda_{k}^{2}\right)\right)}\left(\frac{\rho}{a}\right)^{\lambda_{k}} \sin \lambda_{k} \varphi$,

152. $\sum_{n=1}^{\infty}\left(A_{n} \rho^{\frac{\pi n}{\alpha}}+B_{n} \rho^{-\frac{\pi n}{\alpha}}\right) \sin \frac{\pi n}{\alpha} \rho$,

$f_{n}=\frac{2}{\alpha} \int_{0}^{\alpha} f(\varphi) \sin \frac{\pi u}{c_{x}} d \varphi: F_{n}=\frac{2}{\alpha_{x}} \int_{0}^{(x)} F(\varphi) \sin \frac{\pi n}{\alpha_{x}} d \rho:$

153.

ш. $\sum_{n=1}^{\infty}\left[\left(\bar{F}_{n} \frac{s h \frac{\pi n y}{a}}{\operatorname{sh} \frac{\pi n b}{a}}+\bar{f}_{n} \frac{\operatorname{sh} \frac{\pi n(b-y)}{a}}{\operatorname{sh} \frac{\pi n b}{a}}\right) \sin \frac{\pi n x}{a}+\right.$

$$
\left.+\left(\bar{\Phi}_{n} \frac{\operatorname{sh} \frac{\pi n x}{b}}{\operatorname{sh} \frac{\pi n a}{b}}+\bar{\varphi}_{n} \frac{\operatorname{sh} \frac{\pi n(a-x)}{b}}{\operatorname{sh} \frac{\pi ı a}{b}}\right) \sin \frac{\pi n y}{b}\right]+u_{0}(x, y)
$$

$\bar{F}(x)=F(x)-u_{0}(x, b), \bar{f}(x)=f(x)-u_{0}(x, 0)$,
$\bar{\varphi}(y)=\varphi(y)-u_{0}(0, y), \bar{\Phi}(y)=\Phi(y)-u_{0}(a, y)$,
$\bar{f}_{n}=\frac{2}{a} \int_{0}^{a} \bar{f}(x) \sin \frac{\pi n x}{a} d x, \bar{F}_{n}=\frac{2}{a} \int_{0}^{a} \bar{F}(x) \sin \frac{\pi n x}{a} d x$.
$\bar{\varphi}_{n}=\frac{2}{b} \int_{0}^{b} \bar{\varphi}(y) \sin \frac{\pi n y}{b} d y, \bar{\Phi}_{n}=\frac{2}{b} \int_{0}^{b} \bar{\Phi}(y) \sin \frac{\pi n y}{b} d y$,
$u_{0}(x, y)=A+B x+C y+D x y, A=f(0)$,
$B=\frac{f(a)-f(0)}{a}, C=\frac{\varphi(b)-\varphi(0)}{b}$,
$D=\frac{F(a)-F(0)-f(a)+f(0)}{a b}:$
ค. $\sum_{k=0}^{\infty} a_{k} \sin \frac{(2 k+1) \pi x}{2 a} \operatorname{sh} \frac{(2 k+1) \pi y}{2 a}$,
$a_{k}=\frac{2}{a} s^{-1} \frac{(2 k+1) \pi b}{2 a} \int_{0}^{a} F(x) \sin \frac{(2 k+1) \pi x}{2 a} d x:$
9. $\frac{(p a-2 A) y}{2 b}+A-\frac{4 a B}{\pi^{2}} \sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2} \operatorname{sh} \frac{(2 k+1) \pi b}{a}} \times$
$\times \cos \frac{(2 k+1) \pi x}{a} s h \frac{(2 k+1) \pi y}{a}:$
n. $\frac{8 B a^{2}}{\pi^{3}} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2 k+1)^{2}-2}{(2 k+1)^{3} c h \frac{(2 k+1) \pi s}{2 a}} \operatorname{sh} \frac{(2 k+1) \pi y}{2 a} \cos \frac{(2 k+1) \pi x}{2 a}:$
t. $U+\frac{2 a}{\pi}\left(T \operatorname{sh} \frac{\pi y}{2 a}-\operatorname{ch}^{-1} \frac{\pi b}{2 a}\left(\frac{2 U}{a}+T \operatorname{sh} \frac{\pi b}{2 a}\right) \operatorname{ch} \frac{\pi y}{2 a}\right) \sin \frac{\pi x}{2 a}-$

$$
-\frac{4 U}{\pi} \sum_{k=1}^{\infty} \frac{c h^{-1} \frac{(2 k+1) \pi b}{2 a}}{2 k+1} \operatorname{ch} \frac{(2 k+1) \pi y}{2 a} \sin \frac{(2 k+1) \pi x}{2 a}:
$$

q. $\frac{4 q b}{\pi^{2}} \sum_{k=0}^{\infty} \frac{\cos ^{-1} \frac{(2 k+1) \pi a}{b}}{(2 k+1)^{2}} \operatorname{sh} \frac{(2 k+1) \pi x}{b} \sin \frac{(2 k+1) \pi y}{b}+$

$$
+\frac{4 U}{\pi} \sum_{k=0}^{\infty} \frac{s h^{-1} \frac{(2 k+1) \pi b}{2 a}}{2 k+1} \operatorname{sh} \frac{(2 k+1) \pi y}{2 a} \sin \frac{(2 k+1) \pi x}{2 a}:
$$

t. $\frac{2 b T}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}\left(\frac{\operatorname{sh} \frac{\pi k y}{a}}{\operatorname{sh} \frac{\pi k b}{a}} \sin \frac{\pi k x}{a}+\frac{s h \frac{\pi k x}{b}}{s h \frac{\pi k a}{b}} \sin \frac{\pi k y}{b}\right)$:
n. $A \frac{\operatorname{sh} \frac{\pi(a-x)}{b}}{\operatorname{sh} \frac{\pi a}{b}} \sin \frac{\pi y}{b}+B \frac{\operatorname{sh} \frac{\pi(b-y)}{a}}{\operatorname{sh} \frac{\pi b}{a}} \sin \frac{\pi x}{a}$:
p. $\sum_{n=1}^{\infty}\left(\frac{\cos \frac{\pi n x}{a}}{\operatorname{sh} \frac{\pi n b}{a}}\left(f_{n} \operatorname{sh} \frac{\pi n(b-y)}{a}+\varphi_{n} \operatorname{sh} \frac{\pi n y}{a}\right)+\right.$

$$
\left.+\frac{b \sin \frac{\pi n y}{b}}{\pi n \operatorname{sh} \frac{\pi n a}{b}}\left(\chi_{n} \operatorname{ch} \frac{\pi n x}{b}-\psi_{n} \operatorname{ch} \frac{\pi n(a-x)}{b}\right)\right):
$$

 annousuhgitna ta:
д. $\frac{4 V_{0}}{\pi} \sum_{m=0}^{\infty} \frac{\sin \frac{\pi(2 m+1) x}{a}}{2 m+1} \frac{\operatorname{sh} \frac{\pi(2 m+1) y}{a}}{\operatorname{sh} \frac{\pi(2 m+1) b}{a}}+$

$$
+\frac{4 V}{\pi} \sum_{m=0}^{\infty} \frac{\sin \frac{\pi(2 m-1) y}{b}}{2 m+1} \frac{\operatorname{sh} \frac{\pi(2 m+1)(a-x)}{b}}{\operatorname{sh} \frac{\pi(2 m+1) a}{b}}:
$$

154.

w. $\sum_{k=0}^{\infty} a_{k} e^{-\frac{\pi x(2 k+1)}{2 l}} \sin \frac{\pi y(2 k+1)}{2 l}$,
$a_{k}=\frac{\grave{\grave{ }}}{l} \int_{0}^{l} f(y) \sin \frac{(2 k+1) \pi y}{2 l} d y:$
ค. $\sum_{k=1}^{\infty} a_{k} e^{-\lambda_{k} x} \cos \lambda_{k} y . a_{k}=\frac{2\left(h^{2}+\lambda_{k}^{2}\right)}{l\left(h^{2}+\lambda_{k}^{2}\right)+h} \int_{0}^{l} f(z) \cos \lambda_{l} z d z$,

2. $\frac{S l}{\pi^{3}} \sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{3}} e^{-\frac{\pi\lrcorner(2 k+1)}{l}} \sin \frac{\pi y(2 k+1)}{l}$:
n. $2(1+h l) \sum_{k=1}^{\infty} \frac{e^{-\lambda_{k} x}}{\lambda_{k}\left(h+l\left(h^{2}+\lambda_{k}^{2}\right)\right)} Y_{k}(y)$,
$Y_{k}(y)=\lambda_{k} \cos \lambda_{k} y+h \sin \lambda_{k} y$,

155. $-\frac{1}{a} \int_{0}^{x} f(x-\xi) \sin a \xi d \xi:$ 156. $A e^{-3 y} \cos 2 x-\frac{B}{2} x \sin x:$
157.
$\sum_{n=-\infty}^{\infty} \psi\left(\frac{2 n l+x}{a}, t\right)=\frac{1}{2 a \sqrt{\pi} t^{3 / 2}} \sum_{n=-\infty}^{\infty}(2 n l+x) e^{-\frac{(2 n l+x)^{2}}{4 a^{2} t}}:$
158. $\frac{x}{2 a \sqrt{\pi} t^{3 / 2}} e^{-\frac{x^{2}}{4 a^{2} t}}: 159 \cdot \frac{x}{2 a \sqrt{\pi}} \int_{0}^{t} \mu(\tau) \frac{e^{-\frac{x^{2}}{4 a^{2}(t-\tau)}}}{(t-\tau)^{3 / 2}} d \tau$:
160. $\left\{\begin{array}{l}0, t<\frac{x}{a} \\ E\left(t-\frac{x}{a}\right), t>\frac{x}{a}\end{array}:\right.$ 161. $\left\{\begin{array}{l}0, t<a x \\ e^{-a m x} E(t-a x), t>a x\end{array}\right.$
$m=\frac{b}{a^{2}}: 162 .\left\{\begin{array}{l}0, t<\frac{x}{a} \\ -a e^{h(x-a t)} \int_{0}^{t-\frac{x}{a}} e^{a h \tau} \varphi(\tau) d \tau, t>\frac{x}{a}\end{array}\right.$
163. $\frac{\varphi(x-a t)+\varphi(x+a t)}{2}+\frac{1}{2 a} \int_{x-a t}^{x+a t} \psi(z) d z$:
164. $\frac{1}{2 a} \int_{0}^{t} d \tau \int_{x-a(t-\tau)}^{x+a(t-\tau)} f(\eta, \tau) d \eta$:
165. $\frac{1}{2 a \sqrt{\pi t}} \int_{-\infty}^{\infty} \varphi(\eta) e^{-\frac{(x-\eta)^{2}}{4 a^{2} t}} d \eta$:
166. $\frac{1}{2 a \sqrt{\pi}} \int_{0}^{t} d \tau \int_{-\infty}^{\infty} f(\eta, \tau) \frac{e^{-\frac{(x-\eta)^{2}}{4 a^{2}(t-\tau)}}}{\sqrt{t-\tau}} d \eta$:
167. 4hnumta Snıphth uhantu dlewhhnfunıpjneta:
$\frac{x}{2 a \sqrt{\pi}} \int_{0}^{t} \frac{\mu(\tau)}{(t-\tau)^{3 / 2}} e^{-\frac{x^{2}}{4 a^{2}(t-\tau)}} d \tau$:
168. 4hnuentis Sniphth unupaniu douithnfuncpjnia:
$-\frac{a}{\sqrt{\pi}} \int_{0}^{t} \frac{\nu(\tau)}{\sqrt{t-\tau}} e^{-\frac{x^{2}}{4 a^{2}(t-\tau)}} d \tau:$
169.
$\frac{1}{2 a \sqrt{\pi}} \int_{0}^{t} \frac{d \tau}{\sqrt{t-\tau}} \int_{0}^{\infty}\left[e^{-\frac{(x-\xi)^{2}}{4 a^{2}(t-\tau)}}-e^{-\frac{(51 \xi)^{2}}{1 n^{2}(t,)}}\right] f(\xi, \tau) d \xi:$
170.4hnunntı \$nınhth uhGintu dlumhnfuntpرnia:
$\frac{\varphi(x+a t)+\varphi(|x-a t|) \cdot \operatorname{sgn}(x-a t)}{2}+\frac{1}{2 a} \int_{|, ~ a t|}^{x+a t} \|(z) d z$:

$\frac{\varphi(x+a t)+\varphi(|x-a t|)}{2}+$
$\frac{1}{2 a}\left\{\int_{0}^{x+a t} \psi(z) d z-s g n(x-a t) \int_{0}^{x-a t i} u(z) d z\right\}$
172. Lhnewnta Sninhth uhancu duwuhnfuncojnia:
$\left\{\begin{array}{l}0,0<t<\frac{x}{a} \\ \mu\left(t-\frac{x}{a}\right) . t>\frac{x}{a}\end{array}\right.$:

174. Lhnumitas Bnenhth uhGincu dlumhnfunıpرnit:
$\frac{1}{2 a} \int_{0}^{t} d \tau \int_{x-a(t-T)}^{T-a\langle t-\tau)} f(\xi \cdot \tau) d \xi:$
175.4nnumata Sniphth unuphncu olumenntunipjnis:
$\frac{1}{2 a} \int_{0}^{1} d \tau\left(\int_{0}^{r-n i t-\tau)} f(s . \tau) d s-\right.$
176. Uhnuanti Sninhth unfirilu oluwihntunigjnis:

178. $\frac{1}{2 a \sqrt{\pi}} \int_{0}^{\infty} d \tau \int_{0}^{\infty} f(\xi, \tau) \frac{e^{-\frac{(x-\xi)^{2}}{4 a^{2}(t-\tau)}}-e^{-\frac{(x+\xi)^{2}}{4 a^{2}(t-\tau)}}}{\sqrt{t-\tau}} d \xi$:
179. $\frac{1}{(2 a \sqrt{\pi t})^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{(x-\xi)^{2}+(y-\eta)^{2}}{4 a^{2} t}} \varphi(\xi, \eta) d \xi d \eta$:
180. $\frac{1}{(2 a \sqrt{\pi})^{2}} \int_{0}^{t} \frac{d \tau}{|t-\tau|} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{(x-\xi)^{2}+(y-\eta)^{2}}{4 a^{2}(t-\tau)}} \times$ $\times f(\xi, \eta, \tau) d \xi d \eta$:
 $K(x, y ; \xi, \eta)=\frac{1}{\sqrt{2 \pi}} \sqrt{\frac{2}{\pi}} e^{-i x \xi} \sin y \eta$ unnhqnu:
$\frac{1}{(2 a \sqrt{\pi t})^{2}} \int_{-\infty}^{\infty} d \xi \int_{0}^{\infty}\left[e^{-\frac{(x-\xi)^{2}+(y-\eta)^{2}}{4 a^{2} t}}-e^{-\frac{(x-\xi)^{2}+(y+\eta)^{2}}{4 a^{2} t}}\right] \times$ $\times f(\xi, \eta) d \eta$:
182. Stu Gułunnn fuinnh gnıgnıun:
$\frac{y}{(2 a \sqrt{\pi})^{2}} \int_{0}^{t} \frac{d \tau}{(t-\tau)^{2}} \int_{-\infty}^{\infty} e^{-\frac{(x-\xi)^{2}+y^{2}}{4 a^{2}(t-\tau)}} f(\xi, \tau) d \xi$:
183. Uhnuntil Bnınhth olhuithnfunlpjniti $(-\infty<x<\infty, 0<y<\infty)$
$K(x, y ; \xi, \eta)=\frac{1}{\sqrt{2 \pi}} \sqrt{\frac{2}{\pi}} e^{-i x \xi} \cos y \eta$ unnhqnu:
$\frac{1}{(2 a \sqrt{\pi t})^{2}} \int_{-\infty}^{\infty} d \xi \int_{0}^{\infty}\left[e^{-\frac{(x-\xi)^{2}+(y-\eta)^{2}}{4 a^{2} t}}+e^{-\frac{(x-\xi)^{2}+(y+\eta)^{2}}{4 a^{2} t}}\right] \times$ $\times f(\xi, \eta) d \eta$:
184. $\int_{0}^{\infty} p J_{0}(p r) e^{-p t}\left(\int_{0}^{\infty} \lambda J_{0}(p \lambda) f(\lambda) d \lambda\right) d p$:

$\frac{A e^{-\frac{R^{2}}{1+\tau^{2}}}}{1+\tau^{2}}\left(\cos \frac{R^{2} \tau}{1+\tau^{2}}+\tau \sin \frac{R^{2} \tau}{1+\tau^{2}}\right), \tau=\frac{4 b t}{a^{2}}, \quad R=\frac{r}{a}:$
186. $\frac{q R}{k} \int_{0}^{\infty} \frac{e^{-\lambda t}}{\lambda+h} J_{0}(\lambda r) J_{1}(\lambda R) d \lambda$:
187. $\sum_{k=1}^{\infty}\left(A_{k} \cos \frac{a \mu_{k} t}{2 \sqrt{l}}+B_{k} \sin \frac{a \mu_{k} t}{2 \sqrt{l}}\right) J_{0}\left(\mu_{k} \sqrt{\frac{x}{l}}\right)$,

$$
A_{k}=\frac{1}{l J_{1}^{2}\left(\mu_{k}\right)} \int_{0}^{l} \varphi(x)\left(\mu_{k} \sqrt{\frac{x}{l}}\right) d x
$$

$$
B_{k}=\frac{2}{a \sqrt{l} \mu_{k} J_{1}^{2}\left(\mu_{k}\right)} \int_{0}^{l} \psi(x)\left(\mu_{k} \sqrt{\frac{x}{l}}\right) d x
$$

188. $\sum_{k=1}^{\infty} T_{k}(t) J_{0}\left(\mu_{k} \sqrt{\frac{x}{l}}\right)+$

$$
+\sum_{k=1}^{\infty}\left(A_{k} \cos \frac{a \mu_{k} t}{2 \sqrt{l}}+B_{k} \sin \frac{a \mu_{k} t}{2 \sqrt{l}}\right) J_{0}\left(\mu_{k} \sqrt{\frac{x}{l}}\right)
$$

$$
T_{k}(t)=\frac{1}{l \omega_{k} J_{1}^{2}\left(\mu_{k}\right)} \times
$$

$$
\times \int_{0}^{t} d \tau \int_{0}^{l} f(\xi, \tau) J_{0}\left(\mu_{k} \sqrt{\frac{\xi}{l}}\right) \sin \omega_{k}(t-\tau) d \xi
$$ tif:

189. Lnıónsúu uciunnta $X(x) \sin \omega t$ untupnu:

$$
\begin{aligned}
& \frac{A}{\omega^{2}}\left[\frac{J_{0}\left(2 \omega \frac{\sqrt{x}}{a}\right)}{J_{0}\left(2 \omega \frac{\sqrt{l}}{a}\right)}-1\right] \sin \omega t- \\
& \quad-4 A \omega \frac{\sqrt{l}}{a} \sum_{k=1}^{\infty} \frac{J_{0}\left(\mu_{k} \sqrt{\frac{x}{l}}\right) \sin \omega_{k} t}{\left(\omega_{k}^{2}-\omega^{2}\right) \mu_{k}^{2} \cdot J_{1}\left(\mu_{k}\right)}
\end{aligned}
$$

190. $\sum_{i=1}^{\infty}\left(A_{k} \cos a \lambda_{k} t+B_{k} \sin a \lambda_{k} t\right) \cdot J_{0}\left(\mu_{k} \sqrt{\frac{x}{l}}\right)$,

$$
\begin{aligned}
& A_{k}=\frac{1}{l J_{1}^{2}\left(\mu_{k}\right)} \int_{0}^{l} \varphi(x)\left(\mu_{k} \sqrt{\frac{x}{l}}\right) d x \\
& B_{k}=\frac{2}{a \lambda_{k} l J_{1}^{2}\left(\mu_{k}\right)} \int_{0}^{l} \psi(x)\left(\mu_{k} \sqrt{\frac{x}{l}}\right) d x
\end{aligned}
$$

 $\lambda_{k}=\sqrt{\frac{\mu_{k}^{2}}{4 l}-\left(\frac{\omega}{a}\right)^{2}}:$
191. $A \cos \frac{\mu_{k} t}{R} J_{0}\left(\frac{\mu_{k} r}{R}\right):$
192. $\sum_{k=1}^{\infty} b_{k} \sin \frac{\mu_{k}}{R} t . J_{0}\left(\frac{\mu_{k} r}{R}\right)$,

$$
b_{k}=\frac{2}{\mu_{k} R J_{1}^{2}\left(\mu_{k}\right)} \int_{0}^{R} r^{2} J_{0}\left(\frac{\mu_{k} r}{R}\right) d r,
$$

193. $a_{0}+b_{0} t+\sum_{k=1}^{\infty}\left(a_{k} \cos \frac{a \mu_{k} t}{R}+b_{k} \sin \frac{a \mu_{k} t}{R}\right) J_{0}\left(\frac{\mu_{k} r}{R}\right)$,

$$
\begin{aligned}
& a_{k}=\frac{2}{R^{2} J_{0}^{2}\left(\mu_{k}\right)} \int_{0}^{R} r \varphi(r) J_{0}\left(\frac{\mu_{k} r}{R}\right) d r, \\
& b_{k}=\frac{2}{a R \mu_{k} J_{0}^{2}\left(\mu_{k}\right)} \int_{0}^{R} r \psi(r) J_{0}\left(\frac{\mu_{k} r}{R}\right) d r, \\
& a_{0}=\frac{2}{R^{2}} \int_{0}^{R} r \varphi(r) d r, b_{0}=\frac{2}{R^{2}} \int_{0}^{R} r \psi(r) d r,
\end{aligned}
$$

194. $8 A \sum_{n=1}^{\infty} \frac{J_{0}\left(\frac{\mu_{n} r}{R}\right)}{\mu_{n}^{3} J_{1}\left(\mu_{n}\right)} \cos \frac{a \mu_{n} t}{R}$,
nnentin $\mu_{k}-n$ п $J_{0}(\mu)=0$ hwu
195. $\frac{2 R U}{a} \sum_{k=1}^{\infty} \frac{J_{0}\left(\frac{\mu_{k} r}{R}\right)}{\mu_{k}^{2} J_{1}\left(\mu_{k}\right)} \sin \frac{a \mu_{k}}{R} t$,

196. $\sum_{n=0}^{\infty} \sum_{m=1}^{\infty}\left[\left(A_{n m} \cos \frac{a \mu_{m}^{(n)} t}{l}+B_{n m} \sin \frac{a \mu_{m}^{(n)} t}{l}\right) \cos n \varphi+\right.$
$\left.+\left(C_{n m} \cos \frac{a \mu_{m}^{(n)} t}{l}+D_{n m} \sin \frac{a \mu_{m}^{(n)} t}{l}\right) \sin n \varphi\right] J_{n}\left(\frac{\mu_{m}^{(n)} r}{l}\right)$.
 $A_{n m}, B_{n m}, C_{n m}, D_{n m}$ puting hwswumunuutuma \$nialighmatinh Snınhth qnnouulhgatnn:
197. $\sum_{k=1}^{\infty} A_{k} \frac{J_{3 / 2}\left(\frac{\mu_{n} r}{R}\right)}{\sqrt{r}} \cos \frac{a \mu_{k} t}{R}$,
$A_{k}=v \int_{0}^{R} r^{5 / 2} J_{3 / 2}\left(\frac{\mu_{k} r}{R}\right) d r\left[\frac{R^{2}}{2} J_{3 / 2}^{2}\left(\mu_{k}\right)\left(1-\frac{2}{\mu_{k}^{2}}\right)\right]^{-1}$,
 mesumentitna ta:
198. $v_{0} \cos \varphi \sum_{n=1}^{\infty} A_{n} J_{1}\left(\frac{\mu_{n} r}{R}\right) \cos \frac{a \mu_{n} t}{R}$,

$$
A_{n}=2 \mu_{n}^{2} \int_{0}^{n} r^{2} J_{1}\left(\frac{\mu_{n} r}{R}\right) d r\left[R\left(\mu_{n}^{2}-1\right) J_{1}^{2}\left(\mu_{n}\right)\right]^{-1}
$$

199. $H_{0} \cos \omega t$-a hunlumunn t innfumphata $H_{0} e^{i \omega t}$-ny L $m j$ anintink
 unaunt $R(r) e^{i \omega t}+w(r, t)$ intupny:

$$
\begin{aligned}
& R(r)=H_{0} \frac{I_{0}\left(r \omega^{\prime} \sqrt{i}\right)}{I_{0}\left(R \omega^{\prime} \sqrt{i}\right)}, \omega^{\prime}=\frac{\sqrt{\omega}}{a} \\
& w(r, t)=\sum_{n=1}^{\infty} A_{n} e^{-\frac{\alpha^{2} \mu^{2}}{R^{2} t}} J_{0}\left(\frac{\mu_{n} r}{R}\right) \\
& A_{n}=\int_{0}^{R} r R(r) J_{0}\left(\frac{\mu_{n} r}{R}\right) d r\left[\frac{R^{2}}{2}\left(J_{1}^{2}\left(\mu_{n}\right)\right]^{-1}=\right.
\end{aligned}
$$

$$
=2 H_{0} \frac{\mu_{n}^{3}-\mu_{n} \omega^{2} i}{\left(\mu_{n}^{4}+\omega^{\prime 4} R^{4}\right) J_{1}\left(\mu_{n}\right)}
$$

200. $U_{0}+\frac{q R}{\lambda}\left[2 \frac{a^{2} t}{R^{2}}-\frac{1}{4}\left(1-2 \frac{r^{2}}{R^{2}}\right)-\right.$

$$
\left.-\sum_{n=1}^{\infty} \frac{2 e^{-\frac{\mathrm{a}^{2} \mu_{n}^{2}}{R^{2}} t}}{\mu_{n}^{2} J_{0}\left(\mu_{n}\right)} J_{0}\left(\frac{\mu_{n} r}{R}\right)\right]
$$

$\lambda \frac{\partial u}{\partial r}=q$ tnf $r=R:$
201. $8 U_{0} \sum_{n=1}^{\infty} e^{-\frac{a^{2} \mu_{n}^{2}}{R^{2}} t} \frac{J_{0}\left(\frac{\mu_{n} r}{R}\right)}{\mu_{n}^{3} J_{1}\left(\mu_{n}\right)}$,

202. w. tanmeha mujsuan lihah $u_{r}(R, t)=0$, hul

$$
u(r, t)=-4 U R^{2} \sum_{k=1}^{\infty} \frac{J_{0}\left(\frac{\mu_{k} r}{R}\right) J_{2}\left(\mu_{k}\right)}{\mu_{k}^{2} J_{0}^{2}\left(\mu_{k}\right)} e^{-\frac{a^{2} \mu_{n}^{2}}{R^{2}} t}
$$

f. tanusha mussuag lihah $u_{r}(R, t)+h u(R, t)=0$, hul

$$
u(r, t)=2 U R^{2} \sum_{k=1}^{\infty} \frac{(2+h R) \mu_{k}^{2}-4 h R}{\mu_{k}^{2}\left(\mu_{k}^{2}+h^{2} R^{2}\right) J_{0}\left(\mu_{k}\right)} e^{-\frac{a^{2} \mu_{n}^{2}}{R^{2}} t} J_{0}\left(\frac{\mu_{k} r}{R}\right)
$$

 Citng tif:

$$
\begin{aligned}
& \text { 9. tanujht musfouan 4Lhah } u(R, t)=0 \text {, huч } \\
& u(r, t)=T+2 \sum_{k=1}^{\infty} \frac{\left(U R^{2}-T\right) \mu_{k}^{2}-4 U R^{2}}{\mu_{k}^{3} J_{1}\left(\mu_{k}\right)} e^{-\frac{a^{2} \mu_{n}^{2}}{R^{2}} t} J_{0}\left(\frac{\mu_{k} r}{R}\right)
\end{aligned}
$$

 pul

$$
u(r, t)=U_{1}+2\left(U_{1}-U_{0}\right) \sum_{n=1}^{\infty} \frac{J_{1}\left(\mu_{n}\right) J_{0}\left(\frac{\mu_{n} r}{R}\right)}{\mu_{n}\left(J_{0}^{2}\left(\mu_{n}\right)+J_{1}^{2}\left(\mu_{n}\right)\right)} e^{-\frac{a^{2} \mu_{u}^{2} t}{R^{2}} t}
$$

$$
\begin{aligned}
u(r, t)= & U_{0}
\end{aligned}+\alpha\left[t+\frac{r^{2}-R^{2}-2 \frac{R}{h}}{4 a^{2}}\right]+\quad .
$$

204.w. tanmiha musumaiting दाhata $u(R, z, t)=u(r, 0, t)=$ $u_{z}(r, l, t)=0$, hul

$$
\begin{aligned}
& u(r, z, t)=\sum_{k=1}^{\infty} \sum_{n=0}^{\infty} a_{k n} e^{-\iota^{2}\left(\lambda_{k}^{2}+\eta_{n}^{2}\right) t} J_{0}\left(\frac{\mu_{k} r}{R}\right) \sin \frac{2 n+1 \pi z}{2 l} \\
& a_{k n}=\frac{32 A l R^{2}(-1)^{n} J_{2}\left(\mu_{k}\right)}{(2 n+1)^{2} \pi^{2} \mu_{k}^{2} J_{1}^{2}\left(\mu_{k}\right)}, \lambda_{k}=\frac{\mu_{k}}{R}, \eta_{n}=\frac{(2 n+1) \pi}{2 l}
\end{aligned}
$$

f. Eqnuith umjomaciang Lihata $u_{r}(R, z, t)+h u(R, z, t)=$ $u_{z}(r, 0, t)=u_{z}(r, l, t)=0$, hul

$$
u(r, z, t)=\sum_{k=1}^{\infty} \sum_{n=0}^{\infty} a_{k n} e^{-a^{2}\left(\lambda_{k}^{2}+\eta_{n}^{2}\right) t} J_{0}\left(\frac{\mu_{k} r}{R}\right) \cos \frac{2 n+1 \pi z}{2 l}
$$

$$
a_{k n}=\frac{16 A l R^{2}\left((-1)^{n}(2 n+1) \pi-2\right) J_{2}}{(2 n+1)^{2} \pi^{2}\left(\mu_{k}^{2}+l^{2} R^{2}\right) J_{0}^{2}\left(\mu_{k}\right)}
$$

$$
\lambda_{k}=\frac{\mu_{k}}{R}, \quad \eta_{n}=\frac{(2 n+1) \pi}{2 l}
$$

 citnatia:
205. $U(r)+\sum_{k=1}^{\infty} A_{k} e^{-a^{2} \lambda_{k}^{2} t} Z_{k}(r), U(r)=\frac{q_{0} r_{2}}{\lambda} \ln \frac{r}{r_{1}}$,

$$
\begin{aligned}
& A_{k}=\frac{\pi^{2} \lambda_{n}^{2}}{2} \frac{J_{1}^{2}\left(\lambda_{k} r_{2}\right)}{J_{0}^{2}\left(\lambda_{k} r_{1}\right)-J_{1}^{2}\left(\lambda_{k} r_{2}\right)} \int_{r_{1}}^{r_{2}} r U(r) Z_{k}(r) d r, \\
& Z_{k}(r)=J_{0}\left(\lambda_{k} r_{1}\right) N_{0}\left(\lambda_{k} r\right)-N_{0}\left(\lambda_{k} r_{1}\right) J_{0}\left(\lambda_{k} r\right),
\end{aligned}
$$ пnuluma mpsumenating ta:

206. u. tanmenti musiomacitan luhataci $u(R, z)=u(r, l)=0, u(r, 0)=$ T, hul

$$
u(r, z)=2 T \sum_{k=1}^{\infty} \frac{J_{0}\left(\frac{\mu_{k} r}{R}\right)}{\mu_{k} J_{1}\left(\mu_{k}\right)}\left(\operatorname{ch} \frac{\mu_{k}}{R} z-c t h \frac{\mu_{k}}{R} l \operatorname{sh} \frac{\mu_{k}}{R} z\right)
$$

 $f(z)$, hul

$$
\begin{aligned}
& u(r, z)=\sum_{k=1}^{\infty} A_{k} \frac{I_{0}\left[\frac{(2 k+1) \pi}{2 l} r\right]}{I_{0}\left[\frac{(2 k+1) \pi}{2 l} R\right]} \sin \frac{(2 k+1) \pi z}{2 l} \\
& A_{k}=\frac{2}{l} \int_{0}^{l} f(x) \sin \frac{(2 k+1) \pi x}{2 l} d x
\end{aligned}
$$

9. Funluminn t iniotal htonlijul futinhnn

$$
\begin{aligned}
& \Delta u=-\frac{Q}{k}, u(r, 0)=u(r, l)=u(R, z)=0: \\
& u(r, z)=\frac{Q}{4 k}\left(R^{2}-r^{2}\right)+\frac{Q R^{2}}{k} \sum_{n=1}^{\infty} \frac{J_{2}\left(\mu_{n}\right)}{\mu_{n}^{2} J_{1}^{2}\left(\mu_{n}\right) \operatorname{sh} \frac{\mu_{n}}{R} l} \times \\
& \times\left(\left(\operatorname{ch} \frac{\mu_{n}}{R} l-1\right) \operatorname{sh} \frac{\mu_{n}}{R} z-\operatorname{sh} \frac{\mu_{n}}{R} l \operatorname{ch} \frac{\mu_{n}}{R} z\right) J_{0}\left(\frac{\mu_{n} r}{R}\right)
\end{aligned}
$$

207. $u(r, z)=\frac{4 T}{\pi} \sum_{n=0}^{\infty} \frac{1}{2 n+1} \frac{K_{0}\left[\frac{(2 n+1) \pi}{l} r\right]}{K_{0}\left[\frac{(2 n+1) \pi}{l} R\right]} \sin \frac{(2 n+1) \pi z}{l}$:
208. $\sum_{n=0}^{\infty} \sum_{m=1}^{\infty}\left(A_{m n} \cos n \varphi+B_{m n} \sin n \varphi\right) J_{n}\left(\frac{\mu_{m}^{(n)}}{R} r\right) \times$

$$
\times \frac{s h^{\mu_{m}^{(n)}}(l-z)}{s h \frac{\mu_{m}^{(n)}}{R} l}+
$$

$+\sum_{n=0}^{\infty} \sum_{m=1}^{\infty}\left(C_{m n} \cos n \varphi+D_{m n} \sin n \varphi\right) J_{n}\left(\frac{\mu_{m}^{(n)}}{R} r\right) \frac{\operatorname{sh} \frac{\mu_{\mu}^{(n)}}{l /} z}{\operatorname{sh} \frac{\mu_{\mu}^{(n)}}{R}}$.
$A_{m n}=\frac{2}{R^{2} \pi \varepsilon_{n}\left(J_{n}^{\prime}\left(\mu_{m}^{(n)}\right)\right)^{2}} \times$
$\times \int_{0}^{2 \pi} \int_{0}^{R} f(r, \varphi) \cos n \varphi J_{n}\left(\frac{\mu_{m}^{(n)}}{R} r\right) r d r d \varphi$,
$\varepsilon_{n}=\left\{\begin{array}{l}2, n=0 \\ 1, n \neq 0\end{array}, B_{m n}=\frac{2}{R^{2} \pi\left(J_{n}^{\prime}\left(\mu_{m}^{(n)}\right)\right)^{2}} \times\right.$
$\times \int_{0}^{2 \pi} \int_{0}^{R} f(r, \varphi) \sin n \varphi J_{n}\left(\frac{\mu_{m}^{(n)}}{R} r\right) r d r d \varphi$,

 fumphitil $F(r, \varphi)$-nu:
209. $u(r, z)=\frac{8 A l}{\pi^{3}} \sum_{k=1}^{\infty} \frac{I_{0}\left[\frac{\pi(2 k+1)}{l} r\right]}{I_{0}\left[\frac{\pi(2 k+1)}{l} R\right]} \frac{\sin \frac{\pi(2 h+1) z}{l}}{(2 k+1)^{3}}$:
210.
$\sum^{x}\left(a_{k} \cos a t \sqrt{2 k(2 k-1)}+b_{k} \sin a t \sqrt{2 k(2 k-1)}\right) P_{2 k-1}\left(\frac{x}{l}\right)$. $k=1$
$a_{k}=\frac{4 k-1}{l} \int_{0}^{l} \gamma(x) P_{2 k-1}\left(\frac{x}{l}\right) d x$.
$b_{k}=\frac{4 k-1}{a l \sqrt{2 k(2 k-1)}} \int_{0}^{l} v(x) P_{2 k-1}\left(\frac{x}{l}\right) d x:$
211. $\sum_{k=1}^{\infty} T_{k}(t) P_{2 k-1}\left(\frac{x}{l}\right) . T_{k}(t)=\frac{4 k-1}{a l \sqrt{2 k(2 k-1)}} \times$

$$
\begin{aligned}
& \times \int_{0}^{t} d \tau \int_{0}^{l} f(\xi, \tau) \sin \omega_{k}(t-\tau) P_{2 k-1}\left(\frac{\xi}{l}\right) d \xi \\
& \omega_{k}=a \sqrt{2 k(2 k-1)}
\end{aligned}
$$

212. $u(r, \theta, \varphi)=\sum_{n=0}^{\infty}\left(\frac{r}{a}\right)^{n} Y_{n 2}(\theta, \varphi)$,

$$
Y_{n}=\sum_{k=0}^{\infty}\left(A_{n k} \cos k \varphi+B_{n k} \sin k \varphi\right) P_{n}^{k}(\cos \theta)
$$

$$
A_{00}=\frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi} f(\theta, \varphi) \sin \theta d \theta d \varphi
$$

$$
A_{n k}=\frac{(2 n+1)(n-k)!}{2 \pi(n+k)!} \times
$$

$$
\times \int_{0}^{2 \pi} \int_{0}^{\pi} f(\theta, \varphi) P_{n}^{k}(\cos \theta) \cos k \varphi \sin \theta d \theta d \varphi, n>0
$$

$$
B_{n k}=\frac{(2 n+1)(n-k)!}{2 \pi(n+k)!} \int_{0}^{2 \pi} \times
$$

$$
\times \int_{0}^{\pi} f(\theta, \varphi) P_{n}^{k}(\cos \theta) \sin k \varphi \sin \theta d \theta d \varphi:
$$

Uuufurun п пtuptinnư
แ. $\frac{r}{a} \cos \theta$:
ค. $\frac{1}{3}\left(1-\frac{r^{2}}{a^{2}}\right)+\frac{r^{2}}{a^{2}} \cos ^{2} \theta:$
q. $\frac{4}{3}\left(\frac{r}{a}\right)^{2} P_{2}(\cos \theta)-\frac{1}{3}$:

ๆ. $\frac{2}{3}-\frac{2}{3}\left(\frac{r}{a}\right)^{2} P_{2}(\cos \theta)$:
213. $u(r, \theta, \varphi)=\sum_{n=0}^{\infty}\left(\frac{a}{r}\right)^{n+1} Y_{n}(\theta, \varphi)$,

214. $u(r, \theta, \varphi)=\sum_{n=1}^{\infty} \frac{r^{n}}{n a^{n-1}} Y_{n}(\theta, \varphi)+$ const,

215.

$u(r, \theta, \varphi)=\sum_{n=1}^{\infty} \frac{a^{n=2}}{(n+1) r^{n+1}} Y_{n}(\theta, \varphi)$,

216.
$V_{2}+\frac{V_{1}-V_{2}}{2} \sum_{n=1}^{\infty}\left(\frac{r}{a}\right)^{n} \frac{2 n+1}{n+1} P_{n-1}(0) P_{n}(\cos \theta), r<a:$
$V_{2}+\frac{V_{1}-V_{2}}{2} \sum_{n=1}^{\infty}\left(\frac{a}{r}\right)^{n+1} \frac{2 n+1}{n+1} P_{n-1}(0) P_{n}(\cos \theta), r>a$:
217. Lhgen qunulnuut $r=r_{0}, \theta=0$ Ltunnus, nnunta (r, θ)-a uptnhly

w. $u(r, \theta)=\left\{\begin{array}{l}e \sum_{n=0}^{\infty}\left(\frac{r^{n}}{r_{0}^{n+1}}-\frac{r_{0}^{n} r^{n}}{a^{n+1}}\right) P_{n}(\cos \theta), r<r_{0} \\ e \sum_{n=0}^{\infty}\left(\frac{r_{0}^{n}}{r^{n+1}}-\frac{r_{0}^{n} r^{n}}{a^{n} r^{n}+}\right) P_{n}(\cos \theta), r>r_{0}\end{array}\right.$:
f. $u(r, \theta)=\left\{\begin{array}{l}e \sum_{n=0}^{\infty}\left(\frac{r^{n}}{r_{0}^{n+1}}-\frac{a^{2 n+1}}{r^{n+1} r_{0}^{n+1}}\right) P_{n}(\cos \theta), r<r_{0} \\ e \sum_{n=0}^{\infty}\left(\frac{r_{0}^{n}}{r^{n+1}}-\frac{a^{2 n+1}}{r^{n+1} r_{0}^{n+1}}\right) P_{n}(\cos \theta), r>r_{0}\end{array}\right.$

Oquntit

$$
\frac{1}{R}=\left\{\begin{array}{l}
\frac{1}{r_{0}} \sum_{n=0}^{\infty}\left(\frac{r}{r_{0}}\right)^{n} P_{n}(\cos \theta), r<r_{0} \\
\frac{1}{r} \sum_{n=0}^{\infty}\left(\frac{r_{0}}{r}\right)^{n} P_{n}(\cos \theta), r>r_{0}
\end{array}\right.
$$

 ingehg:
218. $\frac{e}{\lambda}+\frac{a V_{0}}{r}-e \sum_{n=0}^{\infty} \frac{a^{2 n+1}}{r_{0}^{n+1} r^{n+1}} P_{n}(\cos \theta)$,
nnuntin V_{0}-a uptnmejh unnetighuia t:
219. $u(r, \theta)=\frac{Q}{4 \pi k R}+\frac{Q}{4 \pi k} \sum_{n=0}^{\infty} \frac{(n+1)-a h}{n+a h} \frac{r_{0}^{n} r^{n}}{a^{2 n+1}} P_{n}(\cos \theta)$.
 untinunņuó t $\left(r_{0}, 0\right)$ 4tunnts: tpt $r=a$, шщ्यш $\frac{k \partial u}{\partial n}+h u=0$:

$$
\frac{Q_{0}}{4 \pi k R}+\sum_{n=0}^{\infty} A_{n}\left(\frac{r}{a}\right)^{n} P_{n}(\cos \theta)
$$

untupnu:
220. $\frac{e}{R}-e \sum_{n=0}^{\infty}\left[\frac{r_{0}^{2 n+1}-a^{2 n+1}}{b^{2 n+1}-a^{2 n+1}} \frac{r^{n}}{r_{0}^{n+1}}+\right.$

$$
\left.+\frac{b^{2 n+1}-r_{0}^{2 n+1}}{b^{2 n+1}-a^{2 n+1}} \frac{a^{2 n+1}}{r_{0}^{n+1} r^{n+1}}\right] P_{n}(\cos \theta):
$$

221. $\sum_{m, n \approx 0}^{\infty} \sum_{k=0}^{n} e^{-\left(\frac{a \mu_{m}^{(n)}}{r_{0}}\right)^{2} t} \frac{J_{n+1 / 2}\left(\frac{\mu_{m}^{(n)} r}{r_{0}}\right)}{\sqrt{r}} P_{n}^{k}(\cos \theta) \times$
$\times\left(A_{m n k} \cos k \varphi+B_{m n k} \sin k \varphi\right)$,
 tri, hulu

$$
A_{m n k}=\int_{0}^{r_{0}} \int_{0}^{\pi} \int_{0}^{2 \pi} f(r, \theta, \varphi) r^{3 / 2} J_{n+1 / 2}\left(\frac{\mu_{m}^{(n)} r}{r_{0}}\right) \times
$$

$\times \sin \theta P_{n}^{k}(\cos \theta) \cos k \varphi d r d \theta d \varphi /$

$$
\varepsilon_{k} \frac{\pi r_{0}^{2}(n+k)!}{(2 n+1)(n-k)!}\left[J_{n+1 / 2}^{\prime}\left(\mu_{m}^{(n)}\right)\right]^{2}
$$

nnuntin $\varepsilon_{k}=\left\{\begin{array}{ll}2, & k=0 \\ 1, & k \neq 0\end{array}\right.$,

222. $\left(\frac{r^{n} f(t)}{n r_{0}^{n-1}}+\sum_{k=1}^{\infty} \psi_{k}(t) \frac{J_{n+1 / 2}\left(\frac{\mu_{k}^{(n)} r}{r_{0}}\right)}{\sqrt{r}}\right) P_{n}(\cos \theta)$,

$$
\begin{aligned}
& \psi_{k}(t)=\frac{r_{0} A_{k}}{a \mu_{k}^{(n)}} \int_{0}^{t} f^{\prime \prime}(\tau) \sin \frac{a \mu_{k}^{(n)}}{r_{0}}(t-\tau) d \tau \\
& A_{k}=-\frac{1}{n r_{0}^{n-1}} \frac{\int_{0}^{r_{0}} r^{n+3 / 2} J_{n+1 / 2}\left(\frac{\mu_{k}^{(n)} r}{r_{0}}\right) d r}{\frac{r_{0}^{2}}{2} J_{n+1 / 2}^{2}\left(\mu_{k}^{(n)}\right)\left(1-\frac{n(n+1)}{\left(\mu_{k}^{(n)}\right)^{2}}\right)}
\end{aligned}
$$

 wnumentitnatio:
223.

$$
\left(\frac{r^{n} f(t)}{n r_{0}^{n-1}}+\sum_{k=1}^{\infty} \psi_{k}(t) \frac{J_{n+1 / 2}\left(\frac{\mu_{k}^{(n)} r}{r_{0}}\right)}{\sqrt{r}}\right) P_{n}^{m}(\cos \theta) \cos m \varphi
$$

qruчulntosnitu

1.М.М.Смирнов, Задачи по уравнениям математической физики, "Наука". 1968.
2. В.С.Владимиров и др., Сборник задач по уравнениям математической физики, "Наука", 1964.
3.Б.М.Будак, А.А.Самарский, А.Н.Тихонов, Сборник задач по математической физики, "Наука", 1972.
4.А.В.Бицадзе, А.Ф.Калиниченко, Сборник задач по уравениям математической физики, М., 1977.
5.А.Ф.Филиппов, Сборник задач по дифференциальным уравнениям, "Наука", 1973.
6.А.Н.Тихонов, А.А.Самарский, Уравнения математической физики, Гостехиздат, 1953.
7.В.С.Владимиров, Уравнения математической физики,"Наука", 1971.
8.Н.С. Кошляков, Э.Б.Глинер, М.М.Смирнов, Уравнения в частных производных математической физики, "Высшая школа", 1970.
9.М.М.Смирнов, дифференциальные уравнения в частных производных второго порядка, "Наука", 1964.
10.В.Я.Арсенин, Математическая физика. Основные уравнения и специальные функции, "Наука", 1966.

 hnuinunulyzntpjniá, 1988:

FกчUしてU4กトロアกトレ

LUKulu4ul qunuøunter 3

er ferntue：
§1．Unwqha цumah un2hh fuanhn 6
 10
 12

 Ftn！$n \eta$ fuanh nitin 16
§2．tqnusha 4 4nzhh fuanhngitn 21
 31
qLath III．TU
 ruínhnaitn 36
§2．Eqnujha 4 unzhh fuanhnnatn 40

 47
§2．ヨunưnunh \＄niElughwitn L щшшпquqnısa tanwish fuanhncitn 50
 9phch \＄nıulughuitnc 59
 64

 hučuumpnıugtiph hwiwn 70
 hwquaumnidatinh husum 85
 huçuumpnisfitph hwsum 92

§1. Lwщ्याшиһ obumennfuntpjnitin 99
§2. Snınhth dumunjuntpjnicin 101
quntru VII. zusntu sntucshultr
§1. qumamjhi pnialghuatin 106
§2. U\$tnh4 L quinuejh \$niCGghwaitn: Ltoduannh puquwannusCitn 114
Tusultulullen tu 3nt3ntulter 121
qru4Uluntra3ntl 198
 199

Uuratulusruucul \＄rprulish rulnrrutrr dnnกчuōnt

 Sщupuciul 300：Tuinttr 175：

ヒクス Qnuqunulu

EnLumb．Ul．Uwanılyma 1
SU0207338

