ч．ก．quffrel3UL

2Uしruzuとhच匕Ч

$512(0751$ $9--12$
 Grbu゙Kh DBSUYUL ZUUULUUCUL

ฯ．T．qUFRTEL3Uし

¿UぃruzUモFч，－
匕Ч

くS？ 512 ： 514 （07）
QUT $\quad 22.14+22.151 \mathrm{~g} 7$
$9 \quad 124$

 ptufunnhumjh \＄wlunulutunh punphnıpṇ：

9UFГゥELBUL ป็．2．

 hpuru．，2011．－ 186 tg：

[^0]

LUIUUPUL

 untuyư wúpnng \{jnıpp:
 huzh

 hwinh

 пчuplupugh huuwn:

N - phumbuía pltiph puqunipgnil
\mathbb{Z} - uufpnye puttph fuqưnupgnis
Q - nughniuul puthp puquinlpjnil
R - hpulquil pultrip Fuqunnıjnitu
C - qnuuyltpu puthnh puqưnıpjniu
© - пuルnupl puqunıpпik

 tupupuquinlpgnil

$a \mid b-a$ phup purminnuf $t b$ phlp
$\boldsymbol{a} \nmid \boldsymbol{b}$ - \boldsymbol{a} phle ${ }^{2}$ fuidulenus b phlp
(a, b) - a in b plthp witikurt

$\varphi(n)$ - EJthnh \$niulghu
$\boldsymbol{\mu}(\boldsymbol{n})$ - Ujniphnuk \$nLulqghu
 puqunupjnil
 uwunhgitinh pwqunupjnit

¿Uし「U ZUでも．

9Lfhriv 1

FUみUŁUUし مもחrbuc

 $a=b k$ intupny，npuntin $0 \neq b, k \in \mathbb{Z}$ ，uuqu uunud tid，np b phlp

 $t \boldsymbol{b}$ plhis）：

1．2．খup

2）Ept $\boldsymbol{k}+\boldsymbol{l}+\cdots+\boldsymbol{n}=\boldsymbol{p}+\boldsymbol{q}+\cdots+\boldsymbol{s}$ untuph huyưumpnupjni－

 uquunh t b plhis：

$$
a=b q+r, \quad 0 \leq r<b
$$

 Ghiplujugntu：Elpunptany lumb，np $a=b q_{1}+r_{1}, 0 \leq r_{1}<b$ ，पри－

 tpp $r-r_{1}=0$, puifh np $\left|r-r_{1}\right|<b$: nıunh $r=r_{1}$, nphg htunlintu t Gumh $q=q_{1}$ huyluaupnepjniug:

Uuxignpŋny pudulưuia ptenptufnu $a=b q+r, 0 \leq r<b$,

 $c_{0}, c_{1}, \ldots, c_{k}$ unf nnq2 Prltan, np

$$
a=c_{k} b^{k}+c_{k-1} b^{k-1}+\cdots+c_{1} b+c_{0}
$$

npuntin $0 \leq c_{l}<b, i=0,1, \ldots, k$, l $c_{k} \neq 0$:
 $a=b q_{1}+c_{0}$, npuitn $0 \leq c_{0}<b$ и $q_{1}=\frac{a-c_{0}}{b}<a$: Eptt $q_{1} \geq b$, uичu
 nputin $0 \leq c_{1}<b$ и $q_{2}<q_{1}$: Gpt $q_{2} \geq b$, uиuu, 2 upnitiulitinul

$$
q_{1}>q_{2}>\cdots
$$

 nph ntuppnud $q_{k}<b$, hul $q_{k-1} \geq b$: Ujuuyhuny huiqquid típ htinlijuil huuruquanqis'

$$
\begin{gathered}
a=b q_{1}+c_{0} \\
q_{1}=b q_{2}+c_{1} \\
\cdots \cdots \\
q_{k-2}=b q_{k-1}+c_{k-2} \\
q_{k-1}=b q_{k}+c_{k-1} \\
q_{k}=b \cdot 0+c_{k}:
\end{gathered}
$$

 unuputinu $q_{k}, q_{k-1}, \ldots, q_{1}$ finulquís pltinn quanulaulep, np

$$
a=c_{k} b^{k}+c_{k-1} b^{k-1}+\cdots+c_{1} b+c_{0}
$$

npuntr $0 \leq c_{l}<b, i=0,1, \ldots, k$, l $c_{k} \neq 0$:

$$
a=d_{k} b^{k}+d_{k-1} b^{k-1}+\cdots+d_{1} b+d_{0}
$$

nnuitin $0 \leq d_{i}<b, i=0,1, \ldots, k$, lu $d_{k} \neq 0$: Ruluh np unuehi h

$$
\begin{aligned}
& a=b x+c_{0} \\
& a=b y+d_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{a-c_{0}}{b}=b u+c_{1} \\
& \frac{a-c_{0}}{b}=b v+d_{1}
\end{aligned}
$$

 hựuиupnıpjnilig pnlnp $i=0,1, \ldots, k$ updtpitiph hứup: Uuчugnugit uyupuluat t:

Ztinhmipnid unnugumb $a=c_{k} b^{k}+c_{k-1} b^{k-1}+\cdots+c_{1} b+c_{0}$
 huúulquinqnuu u huufunnun qpynuu t

$$
a=\left(c_{k} c_{k-1} \cdots c_{1} c_{0}\right)_{b}
$$

 htunlujul 4 tipuy.

$$
43=(101011)_{2}
$$

nanuthtung $43=1 \cdot 2^{5}+0 \cdot 2^{4}+1 \cdot 2^{3}+0 \cdot 2^{2}+1 \cdot 2+1$, huly 3ulpuit hwuwlumpqnuí

$$
43=(1121)_{3}
$$

npnulhtunk $43=1 \cdot 3^{3}+1 \cdot 3^{2}+2 \cdot 3+1$:

हч̆LF?GUF UL9

a) $b \mid a$.
b) $b \nmid a$:

Unughi пthupniu $a: b$, htinhumutu $(a, b)=b:$ Eplpnpq
 ưugnnŋp r.

$$
a=b q+r, \quad 0 \leq r<b:
$$

$$
(a, b)=(b, r)=\left(r, r_{1}\right):
$$

$$
\begin{gather*}
a=b q+r, 0 \leq r<b \\
b=r q_{1}+r_{1}, 0 \leq r_{1}<r_{1} \\
r=r_{1} q_{2}+r_{2}, 0 \leq r_{2}<r_{1} \\
r_{1}=r_{2} q_{3}+r_{3}, 0 \leq r_{3}<r_{2} \tag{1.1}\\
\cdots \cdots \cdots \cdots \cdots \\
r_{n-1}=r_{n} q_{n+1}+r_{n+1}, 0 \leq r_{n+1}<r_{n} \\
\quad r_{n}=r_{n+1} q_{n+2}
\end{gather*}
$$

$$
(a, b)=(b, r)=\left(r, r_{1}\right)=\cdots=\left(r_{n}, r_{n+1}\right)=r_{n+1}:
$$

 flumgnpnht:

 $a x+b y=r_{n+1}$
 funydiat

$$
a x+b y=(a, b)
$$

$$
a x+b y=1:
$$

 plh पnu:

 plh Unu:
1.10. Ltunhusip: Ept $a_{1} a_{2} \cdots a_{n}$ wpunuqnumin fucuiaunid $t p$
 puctululh p uqupq pulh unu:

 huuruip

$$
(a, b) \cdot[a, b]=a b:
$$

Uuyugntgg: Fhgnup M hulunhumennu $t a \operatorname{la} b$ puthp nplut
 huzutu fumb $M: b$ पuvi $a k: b:$

Gupunptiup $(a, b)=d$: Uנף qtuppnul $a=a_{1} d$ l $b=b_{1} d$, npuntin $\left(a_{1}, b_{1}\right)=1$, quunukuplip, np

$$
\frac{a k}{b}=\frac{a_{1} d k}{b_{1} d}=\frac{a_{1} k}{b_{1}} \in \mathbb{Z}:
$$

nıuunh $k=b_{1} t$ (pulif $\mathrm{np}\left(a_{1}, b_{1}\right)=1$), puig $b_{1}=\frac{b}{d}$, htunhuuutu,

$$
k=\frac{b}{d} t \quad \operatorname{la}=a k=\frac{a b}{d} t:
$$

 $[a, b]=\frac{a b}{d}$, puig $(a, b)=d$, htunluupup $(a, b) \cdot[a, b]=a b:$

 pnptifu:

$$
n=n_{1} n_{\mathbf{2}}
$$

$$
\begin{array}{ll}
n_{1}=p_{1} p_{2} \cdots p_{k \prime} & k \geq 1, \\
n_{2}=q_{1} q_{2} \cdots q_{s \prime} & s \geq 1,
\end{array}
$$

nputin $p_{1}, p_{2}, \ldots, p_{k}$ b $q_{1}, q_{2}, \ldots, q_{s}$ uиpniq pultpp umpq tif: 2tinhurup

$$
n=n_{1} n_{2}=p_{1} p_{2} \cdots p_{k} q_{1} q_{2} \cdots q_{z}
$$

I qujnıpjuix umuk uxumgngutud $t:$
 nıdnıpjnilu.

$$
n=p_{1} p_{2} \cdots p_{k} \text { \& } n=q_{1} q_{2} \cdots q_{s}:
$$

$$
p_{2} \cdots p_{k}=\frac{q_{1} q_{2} \cdots q_{s}}{p_{1}}
$$

 huuluuumpnepjncin hiuupuulnp it utilhg utid q_{r}, \ldots, q_{s} pltiph

 ytipinidnupjuin hurump quanuinulip htunlijuil untupp.

$$
n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{m}^{\alpha_{m}}:
$$

 4tpinidnupjnid:

 23 l 29: Zupg t wnuquilent, pt pluwiuid pltiph huqnpque-

1.13. Ahnphu (Fyllihqku): Tupq pltap puquntpjnilik wiultng

 $t:$ Yuquitip utilhg úte htinkumul $P=p_{1} p_{2} \cdots p_{n}+1$ phlp: Uju ${ }^{2}$

 Ptinptufi wuurgnıgluy 5 ::

Thgnıp $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, npuntin $p_{1}, p_{2}, \ldots, p_{k}$ pultpp uqupq tix:
 $p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{k}^{\beta_{k}}$ untupg, npuntin $0 \leq \beta_{i} \leq \alpha_{i} \quad \mathrm{~L} i=1,2, \ldots, k$: Yuquitup

$$
\left(1+p_{1}+p_{1}^{2}+\cdots+p_{1}^{\alpha_{1}}\right)\left(1+p_{2}+p_{2}^{2}+\cdots+p_{2}^{\alpha_{2}}\right) \cdots\left(1+p_{k}+p_{k}^{2}+\cdots+p_{k}^{\alpha_{k}}\right):
$$

$$
\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right) \cdots\left(\alpha_{k}+1\right)
$$

Ujuwhunul, n plh hpunhg vumptin fninn puctulumpunitaph puinuly unulnut t

$$
\tau(n)=\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right) \cdots\left(\alpha_{k}+1\right)
$$

puikuaduny, npuntin $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$:
Zugnp币

$$
\begin{aligned}
& \sigma(n)=\left(1+p_{1}+p_{1}^{2}+\cdots+p_{1}^{\alpha_{1}}\right)\left(1+p_{2}+p_{2}^{2}+\cdots+p_{2}^{\alpha_{2}}\right) \cdots\left(1+p_{k}+p_{k}^{2}+\cdots+p_{k}^{\alpha_{k}}\right)= \\
&=\frac{p_{1}^{\alpha_{1+1}}-1}{p_{1}-1} \cdot \frac{p_{2}^{\alpha_{2}+1}-1}{p_{2}-1} \cdots \frac{p_{k}^{k_{1}+1}-1}{p_{k}-1}
\end{aligned}
$$

1.14. Uwhufubinus:

$$
\sigma(n)-n=n \text { पuर्य } \sigma(n)=2 n:
$$

 ntuppnuu $n=2^{p-1} \cdot q$ h, htunkupuun,

$$
\sigma(n)=\frac{2^{p-1}}{2-1} \cdot \frac{q^{2}-1}{q-1} \text { पuxu } \sigma(n)=\left(2^{p}-1\right)(q+1):
$$

nututup $q+1=2^{p}$: ntuunh

$$
\sigma(n)=\left(2^{p}-1\right) 2^{p}=2 \cdot 2^{p-1}\left(2^{p}-1\right)=2 n
$$

lin phulp quinupjuil:

 чшunurguil til tuil $2^{16}\left(2^{17}-1\right)$ h $2^{126}\left(2^{127}-1\right)$ pllapp: $2^{p}-1$

 $m=d l_{1}$: nıuunh $d l_{1}<d l$ quuv $1 \leq l_{1}<l \mathrm{~h}$, fuigh win, $\left(l_{1}, l\right)=1$:

 $\left(1 \leq l_{1}<l \mathrm{~h}\left(l_{1}, l\right)=1\right)$:

 पnu:
 ририйpr.

$$
1, d_{1}, d_{2}, \ldots, d_{k}, \ldots, n:
$$

$$
n, l_{1}, l_{2}, \ldots, l_{k}, \ldots, 1
$$

 uny quanulimuly

$$
(1),\left(d_{1}\right),\left(d_{2}\right), \ldots,\left(d_{k}\right), \ldots,(n)
$$

 puikulp likhe $\varphi(n)+\varphi\left(l_{1}\right)+\varphi\left(l_{2}\right)+\cdots+\varphi\left(l_{k}\right)+\cdots+\varphi(1)$: Uјичйипи,

$$
\begin{gathered}
\varphi(n)+\varphi\left(l_{1}\right)+\varphi\left(l_{2}\right)+\cdots+\varphi\left(l_{k}\right)+\cdots+\varphi(1)=n \\
\sum_{l_{\| n}} \varphi(l)=n:
\end{gathered}
$$

Uuquannigh wulupunquit:

$$
\begin{gather*}
m=\varphi(m)+\sum \varphi(l), \tag{1.2}\\
n=\varphi(n)+\sum \varphi(d), \tag{1.3}\\
m n=\varphi(m n)+\sum \varphi(m d)+\sum \varphi(n l)+\sum \varphi(l d): \tag{1.4}
\end{gather*}
$$

 huyuumpnipjnituhg quanmixulup.

$$
\begin{gather*}
m n=\varphi(m n)+\sum \varphi(m) \varphi(d)+\sum \varphi(n) \varphi(l)+\sum \varphi(l) \varphi(d) \\
4 u x u \\
m n=\varphi(m n)+\varphi(m) \sum \varphi(d)+\varphi(n) \sum \varphi(l)+\sum \varphi(l) \sum \varphi(d): \tag{1.5}
\end{gather*}
$$

 funtipe quanulumip.

$$
\begin{equation*}
m n=\varphi(m) \varphi(n)+\varphi(m) \sum \varphi(d)+\varphi(n) \sum \varphi(l)+\sum \varphi(l) \sum \varphi(d): \tag{1.6}
\end{equation*}
$$

$$
\varphi(m \cdot n)=\varphi(m) \cdot \varphi(n)
$$

 htunlujui pltipit tíl.

$$
1 \cdot p, 2 \cdot p, \ldots, p^{\kappa-1} \cdot p
$$

$$
\varphi\left(p^{\alpha}\right)=p^{\alpha}-p^{\alpha-1}=p^{\alpha}\left(1-\frac{1}{p}\right):
$$

1.20. Ptnpht: Gpt $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, uuqu

$$
\varphi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{k}}\right):
$$

Uuqugntjg:

$$
\begin{gathered}
\varphi(n)=\varphi\left(p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}\right)=\varphi\left(p_{1}^{\alpha_{1}}\right) \varphi\left(p_{2}^{\alpha_{2}}\right) \cdots \varphi\left(p_{k}^{\alpha_{k}}\right)= \\
=p_{1}^{\alpha_{1}}\left(1-\frac{1}{p_{1}}\right) p_{2}^{\alpha_{2}}\left(1-\frac{1}{p_{2}}\right) \cdots p_{k}^{\alpha_{k}}\left(1-\frac{1}{p_{k}}\right)= \\
=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{k}}\right):
\end{gathered}
$$

 uuhufukunuu t htunlugu litpuy.

- $\mu(n)=1, \operatorname{tpp} n=1$.
- $\mu(n)=(-1)^{k}, \operatorname{tipf} n=p_{1} p_{2} \cdots p_{k}$, npuntr p_{i} pltpia qnifq un qnusq ppuphg umpptip uqupq plin tid.
- $\mu(n)=0$, hnf n ppup pucuidutnua t nplit p uqupq puh punnulyntunt पри:
1.21. Ahnptr: Gpt $(m, n)=1$, uиии $\mu(m \cdot n)=\mu(m) \cdot \mu(n)$:

Uuyugnıg: Ept $m=1$ quud $n=1$, uxum ptantuftu wifuhujun-
 htunlujui tiplyn unupptpulqutipp.
a) $\boldsymbol{\mu}(\boldsymbol{m})=0 \quad$ पuर्u $\quad \mu(n)=0, \quad$ nLunh $\quad \mu(m \cdot n)=0 \quad$ l $\mu(m \cdot n)=\mu(m) \cdot \mu(n)$.
b) $\mu(m) \neq 0 \quad$ и $\quad \mu(n) \neq 0, \quad$ ujuplupi' $\quad m=q_{1} q_{2} \cdots q_{s} \quad$ b
 the l $\quad q_{1} \neq p_{j}$, puilup np $(m, n)=1$: Ztunkuuytur $\mu(m)=(-1)^{s}$, $\mu(n)=(-1)^{k}, \quad \mu(m \cdot n)=(-1)^{s+k} \quad$ l $\quad \mu(m \cdot n)=\mu(m) \cdot \mu(n):$ Ptinptufu wu्qugnıglui t::

२トしUЧUも ロヒחREUC

1．22．Uuhufudanuf：Ept a li b uufpnng pulthp $a-b$ nuppti－

 ppup htion puqnuuntiph tid puin unqnil n ：Zußulu r utimgnpng

1．23． $2 w n q n \angle p m i f:$

2）Epta $a \equiv b(\bmod n)$ ，шщии $b \equiv a(\bmod n)(u h u t i n p h\langle n ı p j n i k)$ ：
3）Eft $a \equiv b(\bmod n) \quad b \quad b \equiv c(\bmod n), \quad$ шиш $a \equiv c(\bmod n)$

4）Ept $a \equiv b(\bmod n) \quad$ и $c \equiv d(\bmod n)$, ши्यш $a \pm c \equiv b \pm$ $d(\bmod n):$

5）$E_{p} \hbar a \equiv b(\bmod n)$, uчи $a m \equiv b m(\bmod n)$, nputп $m \in \mathbb{Z}$ ：
6）$E_{p} k a \equiv b(\bmod n) l c \equiv d(\bmod n)$, шиии $a c \equiv b d(\bmod n)$ ：
 $a \equiv b(\bmod n)$ ，щи्ұuи $a^{m} \equiv b^{m}(\bmod n)$ ：Fuquuчtu，$a \equiv b(\bmod n)$

7）$E_{p} k a m \equiv b m(\bmod n) h(m, n)=1$, шиш $a \equiv b(\bmod n)$ ：
8）$t_{p} t a m \equiv b m(\bmod n m), ш щ ш a \equiv b(\bmod n)$ ：
9）$E_{p} \not \subset a \equiv b(\bmod n)$ l $n: n_{1}$, шиии $a \equiv b\left(\bmod n_{1}\right)$ ：
10）$E_{p} k a-b \equiv c(\bmod n)$ ，шиии $a \equiv b+c(\bmod n)$ ：
 uиия $k i k a \equiv b\left(\bmod n_{1}\right), a \equiv b\left(\bmod n_{2}\right), \ldots, a \equiv b\left(\bmod n_{k}\right)$ ，uчи $a \equiv b\left(\bmod n_{1} n_{2} \cdots n_{k}\right):$

Uju huunlqnipjnilig quuuqugnigtiag $k=2$ ntuppnuu：Cinhhuinnup

 npuntin $p_{i} \neq q_{j}$, tpp $1 \leq i \leq s$ l $1 \leq j \leq t$, npnuthiunl $\left(n_{1}, n_{2}\right)=1$: bu pulup np $(a-b): n_{1} \mathrm{~L}(a-b): n_{2}$, nuunh $a-b$ plh quiniumiquis

$$
a-b=p_{1}^{\sigma_{1}} p_{2}^{\sigma_{2}} \cdots p_{s}^{\sigma_{s}} q_{1}^{\tau_{1}} q_{2}^{\tau_{2}} \cdots q_{t}^{\tau_{t}} r_{1}^{\pi_{1}} r_{2}^{\pi_{2}} \cdots r_{l}^{\pi_{1}}
$$

npuntin $\alpha_{i} \leq \sigma_{i}$ \& $\beta_{j} \leq \tau_{j}$, $\operatorname{tpf} i=1,2, \ldots, s \mathrm{l} j=1,2, \ldots, t$: 2tunhupup $(a-b) \vdots n_{1} n_{2}$ पuuर $a \equiv b\left(\bmod n_{1} n_{2}\right):$
1.24. Alnptuf: Ept $f(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots+c_{1} x+c_{0}$
 $f(a)=f(b)(\bmod m):$

Uupugnıg: Gpot $a \equiv b(\bmod m)$, uuqu $a^{k} \equiv b^{k}(\bmod m)$, npuntin
 fuquuxumuntitip c_{k} qniouligny, quenulumip $c_{k} a^{k} \equiv c_{k} b^{k}(\bmod m)$, $k=\mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots, n$, दूuर्~

$$
\left.\begin{array}{rl}
c_{n} a^{n} & \equiv c_{n} b^{n} \\
c_{n-1} a^{n-1} & \equiv c_{n-1} b^{n-1} \\
\cdots \cdots & \cdots \\
c_{1} a & \equiv c_{1} b \\
c_{0} & \equiv c_{0}
\end{array}\right\}(\bmod m):
$$

 Uunting पnılutiumbe.

$$
c_{n} a^{n}+c_{n-1} a^{n-1}+\cdots+c_{1} a+c_{0} \equiv c_{n} b^{n}+c_{n-1} b^{n-1}+\cdots+c_{1} b+c_{0}(\bmod m)
$$

पưu $f(a)=f(b)(\bmod m)$:

$$
f(10)=c_{n} 10^{n}+c_{n-1} 10^{n-1}+\cdots+c_{1} 10+c_{0}
$$

 $f(10)=f(1)(\bmod 3,9)$ quur $n p$ tinulut t

$$
c_{n} 10^{n}+c_{n-1} 10^{n-1}+\cdots+c_{1} 10+c_{0} \equiv c_{n}+c_{n-1}+\cdots+c_{1}+c_{0}(\bmod 3,9):
$$

 $f(10) \equiv f(-1)(\bmod 11)$, puig

$$
f(-1)=c_{0}-c_{1}+c_{2}-c_{3}+\cdots+(-1)^{n} c_{n}
$$

2tinhupun, npuituqh $\left(c_{n} c_{n-1} \cdots c_{1} c_{0}\right)_{10}$ phlр funcuilulh 11 पри,

1.25. Lh_fıu: Eptt $(a, m)=1 \mathrm{l}(b, m)=1$, uии $(a b, m)=1$:

Uuyugnılg: fuluh np $(a, m)=1 \mathrm{~h}(b, m)=1$, wuqu qnjnıpjnilu nulutu mjuuphuh x_{1}, y_{1} l x_{2}, y_{2} uupnng putin, np $a x_{1}+m y_{1}=1 \mathrm{l}$
 fitipe unuminnu tipp

$$
a b\left(x_{1} x_{2}\right)+m\left(a x_{1} y_{2}+b x_{2} y_{1}+m y_{1} y_{2}\right)=1
$$

1.26. बhnphu ($\Sigma_{\Omega} h_{n}$): Gpt $(a, m)=1$, шщии $a^{\varphi(m)} \equiv 1(\bmod m)$:

Uuqugntg: Thgntp $a_{1}, a_{2}, \ldots, a_{\varphi(m)}$ huinhuminnu tif m plhg
 $(a, m)=1$: bipunptip $a a_{1}, a a_{2}, \ldots, a a_{\varphi(m)}$ puthp udtiumungen

$$
\left.\begin{array}{rl}
a a_{1} & \equiv b_{1} \\
a a_{2} & \equiv b_{2} \\
\ldots \ldots & \cdots a_{\varphi(m)} \equiv b_{\varphi(m)}
\end{array}\right\}(\bmod m):
$$

 Yunuinulup, np

$$
a^{\varphi(m)} a_{1} a_{2} \cdots a_{\varphi(m)} \equiv b_{1} b_{2} \cdots b_{\varphi(m)}(\bmod m):
$$

 dupup urupq tix m pulh htiun 4 ppung unupptin tif (tpt

 $L(a, p)=1$, uquu $a^{p-1} \equiv 1(\bmod p):$
1.28. Lhffiu: Пpuqtuqh $a x \equiv 1(\bmod m)$ purquinnufí nifituu

Uuyugnigg: Eptt x_{0} huinhuminul $t a x \equiv 1(\bmod m)$ Funquun-
 $a x_{0}+m\left(-y_{0}\right)=1 \Leftrightarrow(a, m)=1$ (huruwdujk 2.26 Ltuरump $):$

 füquunnuuktaph htunluul

$$
\left\{\begin{array}{c}
x \equiv a_{1}\left(\bmod m_{1}\right) \\
x \equiv a_{2}\left(\bmod m_{2}\right) \\
\cdots \cdots \cdots \\
x \equiv a_{n}\left(\bmod m_{n}\right)
\end{array}\right.
$$

 [nч' $k_{i}=m_{1} \cdots m_{i-1} m_{i+1} \cdots m_{n}, i=1,2, \ldots, n$, पunnuiumiup $\left(k_{i}, m_{i}\right)=1$, puik $\mathrm{np}\left(m_{i}, m_{j}\right)=1$, tap $1 \leq i<j \leq n$: Ztunhuppup, huruaduju
 npunting $k_{i} x_{i} a_{i} \equiv a_{i}\left(\bmod m_{i}\right)$, ujuhlepi $k_{i} z_{i} \equiv a_{i}\left(\bmod m_{i}\right)$, npuntin $z_{i}=x_{i} a_{i}, i=1,2, \ldots, n$: Tupq 5 livil, np $k_{j} z_{j} \equiv 0\left(\bmod m_{i}\right)\left(k_{\mathrm{pf}} i \neq j\right)$,
 puluynip $i=1,2, \ldots, n$ undtaph hurfup qniatiauiup.

$$
k_{1} z_{1}+k_{2} z_{2}+\cdots+k_{n} z_{n} \equiv a_{t}\left(\bmod m_{l}\right),
$$

 huufulquang inidnuu, npnuhtunl

$$
\begin{gathered}
k_{1} z_{1}+\cdots+k_{i-1} z_{i-1}+k_{l} z_{l}+k_{l+1} z_{l+1}+\cdots+k_{n} z_{n} \equiv \\
\equiv 0+\cdots+0+a_{l}+0+\cdots+0\left(\bmod m_{i}\right):
\end{gathered}
$$

 unhunıpjuis huunlqnıpjuis huriuduji पnifitiumip

$$
x_{1} \equiv a_{i}\left(\bmod m_{l}\right), i=1,2, \ldots, n:
$$

 шичи $y_{0}-y_{1} \equiv 0\left(\bmod m_{i}\right), i=1,2, \ldots, n$, l puik np $m_{1}, m_{2}, \ldots, m_{n}$

$$
y_{0}-y_{1} \equiv 0\left(\bmod m_{1} m_{2} \cdots m_{n}\right) \text { quud } y_{0} \equiv y_{1}\left(\bmod m_{1} m_{2} \cdots m_{n}\right):
$$

Uuqugnijgi wulupunum 5:

QLのにお2

YחUTLEPU مu्G

$\mathbf{N} \subset \mathbf{Z} \subset \mathbf{Q} \subset \mathbb{R}$

 puquuntpjnciutipp：

чUnnfsnfuc

 huy̧uuupuxit nionnup:

 htun:

$$
\mathbb{C}=\{(a, b) \mid a, b \in \mathbb{R}\}:
$$

$$
\begin{gather*}
\left(a_{1}, b_{1}\right)+\left(a_{2}, b_{2}\right)=\left(a_{1}+a_{2}, b_{1}+b_{2}\right) \tag{2.1}\\
\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right)=\left(a_{1} a_{2}-b_{1} b_{2}, a_{1} b_{2}+b_{1} a_{2}\right): \tag{2.2}
\end{gather*}
$$

 hulunud la fưtuinnu (pugh qnojh पnu pudulitinng):

 nıpnuju:

 hwчйuширпирјии,

$$
(x, y)=\left(a_{1}, b_{1}\right)-\left(a_{2}, b_{2}\right)=\left(a_{1}-a_{2}, b_{1}-b_{2}\right)
$$

$$
\left\{\begin{array}{l}
a_{2} x-b_{2} y=a_{1} \\
b_{2} x+a_{2} y=b_{1}
\end{array}\right.
$$

$$
x=\frac{a_{1} a_{2}+b_{1} b_{2}}{a_{2}^{2}+b_{2}^{2}}, \quad y=\frac{b_{1} a_{2}-a_{1} b_{2}}{a_{2}^{2}+b_{2}^{2}}
$$

$$
\frac{\left(a_{1}, b_{1}\right)}{\left(a_{2}, b_{2}\right)}=\left(\frac{a_{1} a_{2}+b_{1} b_{2}}{a_{2}^{2}+b_{2}^{2}}, \frac{b_{1} a_{2}-a_{1} b_{2}}{a_{2}^{2}+b_{2}^{2}}\right):
$$

 qnulq卫:

Yunntgquid C puquintpjnian qn\&untu t qnuultapu pltph puqunuppuid:

 puikudlatiph unuminnu thep, np

$$
\begin{gathered}
(a, 0)+(b, 0)=(a+b, 0+0)=(a+b, 0) \\
(a, 0)(b, 0)=(a \cdot b-0 \cdot 0, a \cdot 0+0 \cdot b)=(a b, 0)
\end{gathered}
$$

$$
(0,1)^{2}=(0,1)(0,1)=(0 \cdot 0-1 \cdot 1,0 \cdot 1+1 \cdot 0)=(-1,0)=-1:
$$

 दtry
 guy uupnnququik niontu:

Ujみígnıg unulag, np

$$
a \equiv(a, 0) \text { b } i \equiv(0,1)
$$

$$
b i=(b, 0)(0,1)=(b \cdot 0-0 \cdot 1, b \cdot 1+0 \cdot 0)=(0, b)
$$

npuntring his

$$
(a, b)=(a, 0)+(0, b)=a+b t:
$$

 ntuppnuf

$$
a+b i=a_{0}+b_{0} i \Rightarrow\left(b-b_{0}\right) i=a_{0}-a:
$$

 2tunhurup $a_{0}=a$ \& $b_{0}=b$:

 quenuputnut

$$
\begin{gathered}
\left(a_{1}+b_{1} i\right)+\left(a_{2}+b_{2} i\right)=\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right) i \\
\left(a_{1}+b_{1} i\right)\left(a_{2}+b_{2} i\right)=\left(a_{1} a_{2}-b_{1} b_{2}\right)+\left(a_{1} b_{2}+b_{1} a_{2}\right) i
\end{gathered}
$$

$$
(a+b t)^{-1}=\frac{a}{a^{2}+b^{2}}+\frac{-b}{a^{2}+b^{2}} t
$$

 $4 \operatorname{lin}(a-b t)^{-1}(a-b i)=1$ punu.

$$
\begin{gathered}
(a+b i)^{-1}=(a+b l)^{-1}(a-b i)^{-1}(a-b l)=((a-b i)(a+b i))^{-1}(a-b l)= \\
=\left(a^{2}+b^{2}\right)^{-1}(a-b l)=\frac{1}{a^{2}+b^{2}}(a-b l)=\frac{a}{a^{2}+b^{2}}+\frac{-b}{a^{2}+b^{2}} t
\end{gathered}
$$

2.1. Luиnqnupmia:

 huknfuminzu tit hpulquit plthp:
2) Sulaluggud z_{1} \& z_{2} qnifultpu puthph huvup

$$
\overline{z_{1}+\overline{z_{2}}}=\overline{z_{1}}+\overline{z_{2}} \text { bu } \overline{z_{1} \cdot z_{2}}=\overline{z_{1}} \cdot \overline{z_{2}} ;
$$

U6ЧしUFUしNRUC

 nhkuonktiphg: ty hulqunulp, jnipupuilynup (a,b) qnugh, nputin
 पtun:

 4tind wnuligp:

 punilu:

 qnuup: Fhgnup $z_{1}=a_{1}+b_{1} i$ l $z_{2}=a_{2}+b_{2} i$: Un

 huianhuuiunus t qnnpnh

 htnuq q § 4 uinnu):

 nhhumentinny, wutruytu h Fhtnu-
 thich qnnprhhumuntinh uqqaium-
 upughuitiph unuagep npuluwis nuqnnıpjuí ni qnnpnhhumunutinh ulqqphulthing ntruy z htinn unuung nungnipjuin ququiud φ whlyming (ulquap 2.3):

ᄂ4. 2.3:

 uluphi hulumnuly nuqnupjuuff:

 quilhu uhuju tiplnt nın

 htur:

$$
\begin{equation*}
|z|=r=\sqrt{a^{2}+b^{2}} \tag{2.3}
\end{equation*}
$$

puikudhny, hul $z \neq 0$ puh wapquitiann

$$
\begin{equation*}
\cos \varphi=\frac{a}{r}, \sin \varphi=\frac{b}{r} \tag{2.4}
\end{equation*}
$$

huyuruupnıpjnilutiphg: Ujuintring

$$
z=a+b l=(r \cos \varphi)+(r \sin \varphi) t=r(\cos \varphi+i \sin \varphi)
$$

$$
z=r(\cos \varphi+i \sin \varphi)
$$

untupnul, npunty $r=|z| \operatorname{lu} \varphi=\arg z$:
Zulqunulp, tot $z=a+b i$ qnuuyltpu phulp qnumb t $z=r_{0}\left(\cos \varphi_{0}+i \sin \varphi_{0}\right)$ untupnl, npuntin $r_{0}, \varphi_{0} \in \mathbb{R} \mathrm{G} r_{0} \geq 0$, шши $r_{0}=|z| \mathrm{l} \varphi_{0}=\arg z:$

 nulitup $r_{0} \cos \varphi_{0}=a \operatorname{l} r_{0} \sin \varphi_{0}=b$ huuquaupnupjnidutipn, npunting \& $r_{0}=\sqrt{a^{2}+b^{2}}$ l, (2.3) Fulumdhh huufudujh, $r_{0}=|z|$: Ful (2.4)
 uип п

 पूulumis intupny.

$$
z_{1}=r_{1}\left(\cos \varphi_{1}+i \sin \varphi_{1}\right) \mathbf{l} z_{2}=r_{2}\left(\cos \varphi_{2}+i \sin \varphi_{2}\right):
$$

$U_{J n}$ ףtuppnuu

$$
z_{1} z_{2}=\left[r_{1}\left(\cos \varphi_{1}+i \sin \varphi_{1}\right)\right]\left[r_{2}\left(\cos \varphi_{2}+i \sin \varphi_{2}\right)\right]=
$$

$$
=r_{1} r_{2}\left[\left(\cos \varphi_{1} \cos \varphi_{2}-\sin \varphi_{1} \sin \varphi_{2}\right)+i\left(\cos \varphi_{1} \sin \varphi_{2}+\sin \varphi_{1} \cos \varphi_{2}\right)\right]=
$$

$$
=r_{1} r_{2}\left[\cos \left(\varphi_{1}+\varphi_{2}\right)+i \sin \left(\varphi_{1}+\varphi_{2}\right)\right]:
$$

 quai untupny.

$$
z_{1} z_{2}=r_{1} r_{2}\left[\cos \left(\varphi_{1}+\varphi_{2}\right)+i \sin \left(\varphi_{1}+\varphi_{2}\right)\right]:
$$

2.2. Phnptuf: Eplqni $z_{1} \operatorname{l~}_{z_{2}}$ qnuuplipu pultnh fuquuxumung-
 utiunuting qnuúupunus.

$$
\left|z_{1} z_{2}\right|=\left|z_{1}\right| \cdot\left|z_{2}\right|, \arg \left(z_{1} z_{2}\right)=\arg z_{1}+\arg z_{2}:
$$

 quandicnư qnuuytupu huppnıpjué

Thgntp z li \bar{z} hurinh huminnut tik huvuinned qnuuptipu pultp: Epte

 Ļtustep (ulquan 2.4): Ujuuntinhg unurunuu tup

L4. 2.4:

$$
|\bar{z}|=|z| \quad \mathrm{l} \quad \arg z=-\arg z
$$

huuluumpnipjnidutipn:
 $z=r(\cos \varphi+i \sin \varphi)$ qnuwultpu pulht hulquinund z^{-1} qnuuluppu puh

$$
\left(z_{1} \cdot z_{2}\right)^{-1}=z_{1}^{-1} \cdot z_{2}^{-1}:
$$

Ztunkupup

$$
\begin{gathered}
\mathbf{z}^{-1}=z^{-1} \cdot\left((\bar{z})^{-1} \cdot \bar{z}\right)=\left(z^{-1} \cdot(\bar{z})^{-1}\right) \cdot \bar{z}=(z \cdot \bar{z})^{-1} \cdot \overline{\mathbf{z}}= \\
=[r(\cos \varphi+i \sin \varphi) \cdot r(\cos \varphi-i \sin \varphi)]^{-1} \cdot r(\cos \varphi-i \sin \varphi)= \\
=\left[r^{2}\left(\cos ^{2} \varphi+\sin ^{2} \varphi\right)\right]^{-1} \cdot r(\cos \varphi-i \sin \varphi)=r^{-2} \cdot r(\cos \varphi-i \sin \varphi) \\
\quad=r^{-1}(\cos (-\varphi)+i \sin (-\varphi)):
\end{gathered}
$$

Ujuühuņ, $z^{-1}=r^{-1}(\cos (-\varphi)+i \sin (-\varphi))$:

Shputiup nilut $z_{0} \in \mathbb{C}$ phl: ?hgnup qnuultapu hupponipjuli

$U_{j} \not \partial u$ tiup ounptiup, np $\left|z_{0}\right|=1$, ujuphapa' $z_{0}=\cos \varphi_{0}+i \sin \varphi_{0}$:

 o qtunk $2^{\text {nupge }}$ huppnipjuin uınnujn: ruluwutu, tipte $z=r(\cos \varphi+i \sin \varphi)$, шщи $z z_{0}=r\left(\cos \left(\varphi+\varphi_{0}\right)+i \sin \left(\varphi+\varphi_{0}\right)\right)$:

 $\mathbf{z} \in \mathbb{C}$ huufup

$$
\begin{aligned}
\psi(z)=\psi_{1} \psi_{2} \psi_{1}^{-1}(z) & =\psi_{1} \psi_{2}\left(z-z_{1}\right)=\psi_{1}\left(\left(z-z_{1}\right) z_{0}\right)= \\
& =\left(z-z_{1}\right) z_{0}+z_{1} .
\end{aligned}
$$

npuntr $z_{0}=\cos \varphi_{0}+i \sin \varphi_{0}:$

$$
[r(\cos \varphi+i \sin \varphi)]^{n}=r^{n}(\cos n \varphi+i \sin n \varphi)
$$

 uybuyhup $z_{0} \in \mathbb{C}$ phy, $n p z_{0}{ }^{n}=z$: Elipumptiap, $n p$ ujpulpuh $z_{0}=r_{0}\left(\cos \varphi_{0}+i \sin \varphi_{0}\right)$ phц qnjnupgnil niluh, ujuhliphi

$$
\begin{gathered}
{\left[r_{0}\left(\cos \varphi_{0}+i \sin \varphi_{0}\right)\right]^{n}=r(\cos \varphi+i \sin \varphi)} \\
\text { पuxu } \\
r_{0}{ }^{n}\left(\cos n \varphi_{0}+i \sin n \varphi_{0}\right)=r(\cos \varphi+i \sin \varphi):
\end{gathered}
$$

$$
r_{0}^{n}=r \mathfrak{l} n \varphi_{0}=\varphi+2 \pi k, k \in \mathbb{Z}:
$$

Ztunkurpup

$$
r_{0}=\sqrt[n]{r} \quad \mathfrak{l} \quad \varphi_{0}=\frac{\varphi+2 \pi k}{n}, k \in \mathbb{Z}:
$$

 uhwndtenptia npn24nク qnulqui ppulquil phul t:
 neftitum htinlujul

$$
\begin{equation*}
z_{0}=\sqrt[n]{r}\left(\cos \frac{\varphi+2 \pi k}{n}+l \sin \frac{\varphi+2 \pi k}{n}\right) \tag{2.5}
\end{equation*}
$$

 uupnne widtputpp:

 $k=n q+t$, nputin $0 \leq t \leq n-1: U_{\mathrm{Jq}_{2}} \eta$ truppnud

$$
\frac{\varphi+2 \pi k}{n}=\frac{\varphi+2 \pi(n q+t)}{n}=\frac{\varphi+2 \pi t}{n}+2 \pi q
$$

 numptpunuu t upqnutitunh undtyhg $k=t$ ntuupnud 2π puhi

2.3. Phapht: $z=r(\cos \varphi+i \sin \varphi)$ qnuulitpa pulhg n-wunh -

 fuutinh.

$$
\sqrt[n]{2}=\sqrt[n]{r}\left(\cos \frac{\varphi+2 \pi k}{n}+i \sin \frac{\varphi+2 \pi k}{n}\right), k=0,1, \ldots, n-1:
$$

 दuw

Fhgnup $z=a+b i \neq 0$ \& $a_{0}+b_{0} i$ phlp hulknhuminnud $t z$ pulb
 nputning

$$
\left\{\begin{array}{c}
a_{0}{ }^{2}-b_{0}^{2}=a \tag{2.6}\\
2 a_{0} b_{0}=b
\end{array}:\right.
$$

$$
\begin{aligned}
\left(a_{0}^{2}-b_{0}^{2}\right)^{2}+4 a_{0}^{2} b_{0}^{2} & =\left(a_{0}^{2}+b_{0}^{2}\right)^{2}=a^{2}+b^{2} \\
& \text { 4uud } \\
a_{0}^{2}+b_{0}^{2} & =+\sqrt{a^{2}+b^{2}}:
\end{aligned}
$$

 uhhunu nulutip

$$
\left\{\begin{array}{c}
a_{0}^{2}-b_{0}^{2}=a \\
a_{0}^{2}+b_{0}^{2}=\sqrt{a^{2}+b^{2}}
\end{array}\right.
$$

huufulpupqn, npinting unumenu tiup

$$
\left\{\begin{array} { c }
{ a _ { 0 } ^ { 2 } = \frac { 1 } { 2 } (a + \sqrt { a ^ { 2 } + b ^ { 2 } }) } \\
{ b _ { 0 } ^ { 2 } = \frac { 1 } { 2 } (- a + \sqrt { a ^ { 2 } + b ^ { 2 } }) }
\end{array} \text { quuu } \left\{\begin{array}{l}
a_{0}= \pm \sqrt{\frac{1}{2}\left(a+\sqrt{a^{2}+b^{2}}\right)} \\
b_{0}= \pm \sqrt{\frac{1}{2}\left(-a+\sqrt{a^{2}+b^{2}}\right)}
\end{array}\right.\right.
$$

 luquh htun: fu unuput $a_{0}+b_{0} i$ untuph tiplent phul, npnip hpunhg

 qumunny.

 upưunhitp:

$$
\varepsilon_{k}=\left(\cos \frac{2 \pi k}{n}+i \sin \frac{2 \pi k}{n}\right), k=0,1, \ldots, n-1
$$

$$
\varepsilon=\cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n}=\varepsilon_{1},
$$

 nulq2. $(k, n)=d>1: U_{j \eta} \eta$ trupnıu $k=d k_{1}, n=d n_{1}$ u

$$
\left(\varepsilon^{k}\right)^{n_{1}}=\varepsilon^{k n_{1}}=\varepsilon^{k_{1} d n_{1}}=\varepsilon^{k_{1} n}=\left(\varepsilon^{n}\right)^{k_{1}}=1:
$$

fuikh $n \mathrm{n} n_{1}<n \mathrm{l}\left(\varepsilon^{k}\right)^{0}=1$, uи्यu $\left(\varepsilon^{k}\right)^{0},\left(\varepsilon^{k}\right)^{1}, \ldots,\left(\varepsilon^{k}\right)^{n-1}$ p丩liph

 $\boldsymbol{k}(\boldsymbol{t}-\boldsymbol{s})=n q+r$, npuntin $0 \leq r \leq n-1:$ 2tunlimpup

$$
\varepsilon^{k(t-s)}=\varepsilon^{n q+r}=\left(\varepsilon^{n}\right)^{q} \varepsilon^{r}=\varepsilon^{r}
$$

 huinh

fuqu

FUQUUL?UULERE 2ES

Thgnup P humphuminnu $t \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ pulujhin puquinupjnilitinhg
 qnıunnut

$$
f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}=\sum_{i=0}^{n} a_{i} x^{l}
$$

 unuqn

$$
f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}+0 \cdot x^{n+1}+\cdots+0 \cdot x^{n+h}
$$

hurumptip untupny, npuntin $h \in \mathbb{N}$: $U_{j!}$ puly umunrunnt P

$$
f(x)=\sum_{l=0}^{n} a_{l} x^{i} \quad \text { lu } g(x)=\sum_{i=0}^{n} b_{l} x^{l}
$$

$$
f(x)+g(x)=\sum_{i=0}^{n}\left(a_{i}+b_{i}\right) x^{l}
$$

$$
f(x) \cdot g(x)=\sum_{k=0}^{m+n} c_{k} x^{k}
$$

huquuuwipnıpjuup, npuntn

$$
c_{k}=\sum_{\substack{l+j=k \\ 0 \leq \leq i \leq m \\ 0 \leq j \leq n}} a_{1} b_{j}=a_{0} b_{k}+a_{1} b_{k-1}+\cdots+a_{k-1} b_{1}+a_{k} b_{0}
$$

P puqunipjulu umpptpnq pninp puquivinuufutiph puqunt-

$$
\begin{gathered}
f(x)+g(x)=g(x)+f(x) \\
\mathbf{k} \\
f(x)+(g(x)+h(x))=(f(x)+g(x))+h(x):
\end{gathered}
$$

$$
f(x) \cdot g(x)=g(x) \cdot f(x)
$$

 ヘuษum

$$
f(x)[g(x) h(x)]=[f(x) g(x)] h(x)
$$

$$
\begin{aligned}
& f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, \quad a_{n} \neq 0 \\
& g(x)=b_{0}+b_{1} x+\cdots+b_{s} x^{5}, b_{s} \neq 0 \\
& h(x)=c_{0}+c_{1} x+\cdots+c_{t} x^{t}, \quad c_{t} \neq 0
\end{aligned}
$$

$$
\sum_{j+m=1}\left(\sum_{k+l=1} a_{k} b_{l}\right) c_{m}=\sum_{k+l+m=1} a_{k} b_{l} c_{m}
$$

$$
\sum_{k+j=t} a_{k}\left(\sum_{l+m=j} b_{l} c_{m}\right)=\sum_{k+l+m=1} a_{k} b_{l} c_{m}
$$

phln: Ytpquuqtu, puqưuaquufitph

$$
[f(x)+g(x)] h(x)=f(x) h(x)+g(x) h(x)
$$

$$
\sum_{k+l=l}\left(a_{k}+b_{k}\right) c_{l}=\sum_{k+l=l} a_{k} c_{l}+\sum_{k+l=l} b_{k} c_{l}
$$

 huiluphuminnu t x^{i} qnpowligge $[f(x)+g(x)] h(x)$ puquuiaquunnu,
 $f(x) h(x)+g(x) h(x)$ puqưuluquinu์:
3.1. Uurhufubutr: Thgnup $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}=\sum_{t=0}^{n} a_{1} x^{i}$
 uinquu: nıptufi quatife t tipounptil, np $a_{n} \neq 0$: Uנף ntuqpniu a_{n}

दñ

$$
\begin{gathered}
\operatorname{deg}(f(x)+g(x)) \leq \max (\operatorname{deg}(f(x)), \operatorname{deg}(g(x))) \\
\operatorname{deg}(f(x) g(x))=\operatorname{deg}(f(x))+\operatorname{deg}(g(x))
\end{gathered}
$$

 nuluh wjhuphup $h(x) \in P[x]$ fuquumiquu, np $f(x)=g(x) h(x)$: Uן

 $g(x), h(x) \in P[x]$ fuquumequufith $g(x)-h(x)$ unupptpnipjnilup
 $\mathrm{t} q \mathrm{p}_{\mathrm{t}} \boldsymbol{g}(x) \equiv \boldsymbol{h}(x)(\bmod f(x))$ untupnu:

$$
\begin{equation*}
f(x) \cdot f^{-1}(x)=f^{-1}(x) \cdot f(x)=1 \tag{3.1}
\end{equation*}
$$

 huinh huminud t a^{-1} umppi: Ful tipt $\operatorname{deg}(f(x))=n \geq 1$, uuqu

 nplat utilp:

 np

$$
\begin{equation*}
f(x)=q(x) g(x)+r(x) \tag{3.2}
\end{equation*}
$$

npuntin $\operatorname{deg}(r(x))<\operatorname{deg}(g(x))$ पuuर $r(x)=0$:
Uumgnıg: bupu wurugnigtip $q(x)$ li $r(x)$ puquiulequulitiph

 $\operatorname{deg}(g(x))=s$, muluytiu np

$$
\begin{aligned}
& f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, a_{n} \neq 0 \\
& g(x)=b_{0}+b_{1} x+\cdots+b_{s} x^{s}, b_{s} \neq 0
\end{aligned}
$$

Yppuntilup plunnulighu puin n pulh: Opgnup $n=0$: Ept kuil $s=0$, uıuи $f(x)=a_{0}, g(x)=b_{0}$, द npuptu $q(x)$ nı $r(x)$ quann tiup

 $r(x)=f(x)$: Thnuplutinp $n \geq s$ qtupp: UlGhujun t, np

$$
f(x)-\left(a_{n} b_{s}^{-1} x^{n-s}\right) g(x) \equiv f_{1}(x)
$$

 np

$$
f_{1}(x)=q_{1}(x) g(x)+r_{1}(x)
$$

$\mathrm{h} \operatorname{deg}\left(r_{1}(x)\right)<\operatorname{deg}(g(x))$ quuv $r_{1}(x)=0$: nuunh

$$
f(x)=\left(a_{n} b_{s}^{-1} x^{n-s}\right) g(x)+f_{1}(x)=\left(a_{n} b_{s}^{-1} x^{n-s}+q_{1}(x)\right) g(x)+r_{1}(x),
$$

$$
f(x)=q_{1}(x) g(x)+r_{1}(x)
$$

 nututup, np

$$
\left(q(x)-q_{1}(x)\right) g(x)=r_{1}(x)-r(x):
$$

 pumght puquinupnilutiphg npht utiqp:

3.4. Lunnlnıpmif:

 $\boldsymbol{h}(\boldsymbol{x})$ य

Ept $a \in F \operatorname{li} a \neq 0$, щичи $f(x)=a\left[a^{-1} f(x)\right]$:
 $a g(x)$ Upu, npunt $a \in F \& a \neq 0$:

Cuun upujuiuinh $f(x)=g(x) h(x)$, npunting ti

$$
f(x)=[a g(x)]\left[a^{-1} h(x)\right]:
$$

7) Uhujk $a f(x), a \neq 0$, untuph puquiulinurfitinn 4 uhmjí

 uhlupi' $f(x)=\operatorname{bg}(x), b \in F$ \& $b \neq 0$, npuntnhg $g(x)=b^{-1} f(x)$:

 $c f(x), c \in F \| c \neq 0$:

 Fuctuinupup:

Uuqugnifge htunknuut (8) $h(1)$ hwunlunipjnilatiphg:

§ 3.2. FU.QUUL?UULETF UUELUUEO

 fuqqưuluquu:

 htunlujur.

3. 7. Lhtfuu: ©pt $f(x)=g(x) q(x)+r(x)$, uмии $f(x), g(x)$ puqui-

 $g(x)=d(x) g_{1}(x)$ \& $r(x)=f(x)-g(x) q(x)=d(x)\left[f_{1}(x)-(x) q(x)\right]$,

 duluwnupp:
 utiap htulujul.

$$
\begin{gather*}
f(x)=g(x) q_{1}(x)+r_{1}(x), \\
g(x)=r_{1}(x) q_{2}(x)+r_{2}(x), \\
r_{1}(x)=r_{2}(x) q_{3}(x)+r_{3}(x), \\
\cdots \cdots \cdots \cdots \tag{3.3}\\
r_{k-2}(x)=r_{k-1}(x) q_{k}(x)+r_{k}(x), \\
r_{k-1}(x)=r_{k}(x) q_{k+1}(x)
\end{gather*}
$$

 pup, nphg htunlenut $t\left(r_{k-1}(x), r_{k}(x)\right)=a^{-1} r_{k}(x)$, npuntin a hulunh-

 untu ting, np

$$
\begin{aligned}
(f(x), g(x)) & =\left(g(x), r_{1}(x)\right)=\left(r_{1}(x), r_{2}(x)\right)=\cdots= \\
= & \left(r_{k-1}(x), r_{k}(x)\right)=a^{-1} r_{k}(x):
\end{aligned}
$$

3.8. Ophinul: Thgnup $P=Q, f(x)=x^{3}-1$ \& $g(x)=x^{2}+1$: $9 \operatorname{nith}_{\mathrm{l}}(f(x), g(x))$:

$$
\begin{aligned}
& x^{3}-1=\left(x^{2}+1\right) x+(-x-1) \\
& x^{2}+1=(-x-1)(-x+1)+2 \\
&-x-1=2\left(-\frac{1}{2} x-\frac{1}{2}\right)
\end{aligned}
$$

 $\left(x^{3}-1, x^{2}+1\right)=1$, ujuhlup $f(x)$ द $g(x)$ puqúulquauktipp

3.9. Ophluwh: Thgntp $f(x)=x^{4}+3 x^{3}-x^{2}-4 x-3$. i $g(x)=3 x^{3}+10 x^{2}+2 x-3:$ quith $(f(x), g(x))$:

$$
\left.\begin{array}{l|l}
3 x^{4}+9 x^{3}-3 x^{2}-12 x-9 & 3 x^{3}+10 x^{2}+2 x-3 \\
3 x^{4}+10 x^{3}+2 x^{2}-3 x
\end{array}\right) x x+1
$$

(fuquरumumunnu kip (-3) -ny)

$$
\begin{aligned}
& 3 x^{3}+15 x^{2}+27 x+27 \\
& \frac{3 x^{3}+10 x^{2}+2 x-3}{5 x^{2}+25 x+30}
\end{aligned}
$$

$$
\begin{gathered}
\begin{array}{l|l}
3 x^{3}+10 x^{2}+2 x-3 & x^{2}+5 x+6 \\
3 x^{3}+15 x^{2}+18 x & 3 x-5 \\
\hline-5 x^{2}-16 x-3 \\
-5 x^{2}-25 x-30 \\
\hline 9 x+27
\end{array}
\end{gathered}
$$

 uhugnnnp: Ztunluwpup $(f(x), g(x))=x+3$:
 phpulhg npuytu htunkmip unnugmup, np tipt $d=(a, b)$, wuyu $d=a x+b y$, npuntn $x, y \in \mathbb{Z}$ l $a^{2}+b^{2} \neq 0$: Uju quuung lhpumultg

 inyluytu quin queplenp t:
3.10. Ahnptuf: Thgnip $f_{1}(x), f_{2}(x) \in P[x]$ puqquelingudfitiph

$$
d(x)=f_{1}(x) g_{1}(x)+f_{2}(x) g_{2}(x):
$$

Uuymgnıg: ᄂ $_{2}$ uilumlitip

$$
D \equiv\left\{f_{1}(x) h_{1}(x)+f_{2}(x) h_{2}(x) \mid h_{1}(x), h_{2}(x) \in P[x]\right\}:
$$

 ntuppnid $g(x)$ puquewinuufg hulenhuminnu $t D$ puquinupjuis

$$
f(x)=q(x) g(x)+r(x),
$$

npuntin $\operatorname{deg}(r(x))<\operatorname{deg}(g(x))$ quư $r^{\prime}(x)=0$: Ruluh np $f(x), g(x) \in D$, шuํㅣ

$$
\begin{array}{ll}
f(x)=f_{1}(x) h_{1}(x)+f_{2}(x) h_{2}(x), & h_{1}(x), h_{2}(x) \in P[x], \\
g(x)=f_{1}(x) h_{1}^{\prime}(x)+f_{2}(x) h_{2}^{\prime}(x), & h_{1}^{\prime}(x), h_{2}^{\prime}(x) \in P[x]:
\end{array}
$$

Ztunhupur

$$
\begin{gathered}
r(x)=f(x)-q(x) g(x)= \\
=f_{1}(x)\left[h_{1}(x)-h_{1}^{\prime}(x) q(x)\right]+f_{2}(x)\left[h_{2}(x)-h_{2}^{\prime}(x) q(x)\right]
\end{gathered}
$$

 Kntp puctuinupup: Uyntu lyñuhg, $g(x)=f_{1}(x) h_{1}^{\prime}(x)+f_{2}(x) h_{2}^{\prime}(x)$
 $f_{1}(x)$ is $f_{2}(x)$ puquiwinuuditiph guiquagud pinh
 quiñ inpuiuuln

$$
d(x)=\left(f_{1}(x), f_{2}(x)\right)=g(x)=f_{1}(x) h_{1}^{\prime}(x)+f_{2}(x) h_{2}^{\prime}(x)
$$

Ч:ngitiny $g_{1}(x)=h_{1}^{\prime}(x)$ \& $g_{2}(x)=h_{2}^{\prime}(x)^{\prime}$ unulunuf tiup, np

$$
d(x)=f_{1}(x) g_{1}(x)+f_{2}(x) g_{2}(x)
$$

$$
f(x) \varphi(x)+g(x) \psi(x)=1
$$

 untinh nuluh $f(x) \varphi(x)+h(x) \psi(x)=1$ huuquumpnıpjnilun, fǔ-np

$$
\varphi(x)[f(x) g(x)]+h(x)[\psi(x) g(x)]=g(x):
$$

§3.3. UᄂЧ్b

 nputin $g(x), h(x) \in P[x]$, htunlenuf t, np $g(x), h(x)$ Fuquimequufut-

 dinh it P fuquinupjuí fuqưи

 puqún ppuik पпиu, puiki np $x^{2}-2=(x-\sqrt{2})(x+\sqrt{2})$:
 up pulah

3.14. Lumnhnipmidi:

 duaph F:

Ept $f(x) \in P[x], \operatorname{deg}(f(x))=1$ u $f(x)=g(x) h(x)$, npuntin $g(x), h(x) \in P[x] \cup \operatorname{deg}(g(x)) \geq 1, \operatorname{deg}(h(x)) \geq 1$, uмиш $f(x)$ fuqui-
 $\operatorname{deg}(g(x))=0$ quuv $\operatorname{deg}(h(x))=0$:

Thgnıp $\operatorname{deg}(f(x)) \geq 1$ l $f(x)=g(x) h(x)$, nuunty $\operatorname{deg}(g(x))=0$ दuuu $\operatorname{deg}(h(x))=0$: 2tunlumpun $a f(x)=[a g(x)] h(x)=g(x)[a h(x)]$, $\operatorname{deg}(\boldsymbol{a f}(\boldsymbol{x})) \geq 1 \mathrm{~h} \operatorname{deg}(\boldsymbol{a g}(\boldsymbol{x}))=0 \mathrm{quu} \mathcal{d e g}(\boldsymbol{a h}(x))=0$:

Thgnıp $(f(x), g(x))=d(x)$: Puik np $d(x)$ pucuiknui \& $g(x)$,
 $\operatorname{deg}(d(x))=0$, цu'u $d(x)=a g(x)$, npuntø $0 \neq a \in P$: Unuqhis

Ept $f(x) 4^{h}$ puduinपnıu $h(x)$ पnu, шиим, hwuwduji (3) huunlqnıpjuis, $(f(x), h(x))=1$: Uyn ŋ̧tupnuu 5.13 ptiphtufig htunlunud t, np $g(x)$ puctuinuntu $t h(x)$ पnu:

 juguth

$$
\begin{equation*}
f(x)=a f_{1}^{\alpha_{1}}(x) f_{2}^{\alpha_{2}}(x) \cdots f_{k}^{\alpha_{k}}(x) \tag{3.4}
\end{equation*}
$$

 quufl uuluq qnpठulhgn, $f_{1}(x), f_{2}(x), \ldots, f_{k}(x)^{\prime}$ hpuphg unuppt p ukultpmotih knpưưn

Uuyugnıgg: ?hgnip $\operatorname{deg}(f(x))=n \geq 1$: Yppuntip hunnılighu gunn n: $\operatorname{bpf} \operatorname{deg}(f(x))=n=1$, wuqu, hưưudujli 3.14 (1) huunqnıp52

 пр

 haplumugnufn, npuntr $g(x), h(x) \in P[x] \quad$ h $\quad 1 \leq \operatorname{deg}(g(x))<n$,

$$
\begin{equation*}
f(x)=a f_{1}^{\alpha_{1}}(x) f_{2}^{\alpha_{2}}(x) \cdots f_{k}^{\alpha_{k}}(x)=b g_{1}^{\beta_{1}}(x) g_{2}^{\beta_{2}}(x) \cdots g_{s}^{\beta_{s}}(x) \tag{3.5}
\end{equation*}
$$

 puquainquifitipi innufuyn

 $h_{1}(x), h_{2}(x), \ldots, h_{n}(x) \in P[x]$ puquiuinquuflitiph huviup qnנnipjnilu
 $\boldsymbol{i}=\mathbf{1}, \mathbf{2}, \ldots, n$:

§ 3.4. fuquutauulerr uruusuer

 Uulth \ll 2 qphen, tipt $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in P[x]$ и $b \in P$,

$$
f(b)=a_{0}+a_{1} b+\cdots+a_{n} b^{n} \in P
$$

 ponili P puquinıpjnilenui (n linuuqpuiui ulqqpniap):
 $P[x]$ puquiulinuu

3.18. Plonptuf (ftqni): P puquinıpjuit b numpp hulinguwienu t

$$
f(x)=(x-b) q(x)+c,
$$

$f(x)=(x-b) q(x)+f(b):$ Uju hưquuupnipjnikhg htingnui ξ ptnithuh uuyugnugn:

 $P[x]$ Fuquiwinquif k-uquanh wpiwin ($k>1$), tipt $f(x)$ puqu-

3.20. Phnpkf: ?hgnıp $f(x) \in P[x] \operatorname{ldeg}(f(x))=n \geq 1: U_{n}$ ntuypnuu, tipt $b_{1}, b_{2}, \ldots, b_{m} \in P$ inupptipp huinghuminuu tid $f(x)$

3.21. Phapht: Лpuqtuqh 2 quud 3 wunn δ wuh $f(x) \in P[x]$

Uumgnug: Ulihpudtzinnupgnian htunknuf t wiultpmotigh

$f(x)=g(x) h(x)$ untupnu, npuntr $g(x) ; h(x) \in F[x] \operatorname{li} 1 \leq \operatorname{deg}(g(x)) \leq$ $\operatorname{deg}(h(x))$: Uulquaju $2 \leq \operatorname{deg}(g(x))+\operatorname{deg}(h(x))=\operatorname{deg}(f(x)) \leq 3$, n p^{-} untuhg $\operatorname{deg}(g(x))=1$: Utphehiuu luquikulnul k, np $g(x)=a x+b$, nputin $0 \neq a, b \in P$: Fuig uin qtaupnud $\left(-b a^{-1}\right) \in P$ nupp hulunh -

9LIKlu4

uuschsuer bu nentroler

§ 4.1. SERUథกfunfosnrulbr bu

 hungtipnud M fuquinipjuid unupptiph wihmunuqual huunlinipjnik-

 quufujulqui quauwųn untruupnjunıpjnitu:
 puiduly huqurumpt $n!$, npuntrin $n!=12 \cdots n$:
 huidentp untupe htunljuili t. $i_{1}, i_{2}, \ldots, i_{n}$, npunty jnipupuiaynip i_{s},

 it n huin ppuphg unupptp hiumpuinpnupgnil: Ept i_{1} pirnpulud k,

 upuunjutpp panitiup hpitig intint

Uuqugnıg: Uju ptnptiun 夭quiuphn $t n=2$ ntuppnus. tipt upu-

 uupugnigtip n huufup: Thgnup uthup \hbar uluth

$$
\begin{equation*}
i_{1}, i_{2}, \ldots, i_{n} \tag{4.1}
\end{equation*}
$$

 $n!$ untnuuqnjuntpjnilikitn:
4.4. Ltunlump: n uhut

4.6. Phnptr: suriquagud unpuluuqnqhghu qnjunui t intnuupnpunıpouju qnijquiponilup:

$$
\ldots, i, j, \ldots
$$

 ninup unpuluuynqhghuyg ittupnuf uflanu tid ppitig intintpnus: Spuiuuunqhghwijhg htiun qnilutiauly
 pniu h i, j uhu

$$
\begin{equation*}
\ldots, i, k_{1}, k_{2}, \ldots, k_{s}, j, \ldots \tag{4.2}
\end{equation*}
$$

 unjnuwulp):

\boldsymbol{i}	\boldsymbol{k}_{1}	\boldsymbol{k}_{2}	\cdots	\boldsymbol{k}_{s-1}	\boldsymbol{k}_{s}	\boldsymbol{j}
\boldsymbol{k}_{1}	\boldsymbol{i}	\boldsymbol{k}_{2}	\cdots	\boldsymbol{k}_{s-1}	\boldsymbol{k}_{s}	\boldsymbol{j}
\boldsymbol{k}_{1}	\boldsymbol{k}_{2}	\boldsymbol{i}	\cdots	\boldsymbol{k}_{s-1}	\boldsymbol{k}_{s}	\boldsymbol{j}
	\vdots			\vdots		
\boldsymbol{k}_{1}	\boldsymbol{k}_{2}	\boldsymbol{k}_{3}	\cdots	\boldsymbol{k}_{s}	\boldsymbol{i}	\boldsymbol{j}
\boldsymbol{k}_{1}	\boldsymbol{k}_{2}	\boldsymbol{k}_{3}	\cdots	\boldsymbol{k}_{s}	\boldsymbol{j}	\boldsymbol{i}
	\vdots			\vdots		
\boldsymbol{k}_{1}	\boldsymbol{k}_{2}	j	\cdots	\boldsymbol{k}_{s-1}	\boldsymbol{k}_{s}	\boldsymbol{i}
\boldsymbol{k}_{1}	j	\boldsymbol{k}_{2}	\cdots	\boldsymbol{k}_{s-1}	\boldsymbol{k}_{s}	\boldsymbol{i}
j	\boldsymbol{k}_{1}	\boldsymbol{k}_{2}	\cdots	\boldsymbol{k}_{s-1}	\boldsymbol{k}_{s}	\boldsymbol{i}

 punipjuik qnujquepjnilip, nuunh (4.2) \mathfrak{l}

$$
\ldots, \boldsymbol{j}, \boldsymbol{k}_{1}, \boldsymbol{k}_{\mathbf{2}}, \ldots, \boldsymbol{k}_{\mathbf{s}}, \boldsymbol{i}, \ldots
$$

 puiturlifh l huyurump $\mathrm{E} \frac{\mathrm{n} \text { : }}{2}$:

 бwik intrumpnipjuit huulqugnıpjnilup:

$$
A=\left(\begin{array}{cccc}
t_{1} & i_{2} & \cdots & l_{n} \tag{4.3}\\
a_{i_{1}} & a_{t_{2}} & \cdots & a_{i_{n}}
\end{array}\right),
$$

npuntin α_{i} hwinh wiggunuu $t i$ ph

 Guil htunlumi tritap untupnul.

$$
\left(\begin{array}{llll}
2 & 1 & 5 & 3 \\
1 & 2 & 2 & 5
\end{array}\right),\left(\begin{array}{llll}
1 & 5 & 2 & 4 \\
3 & 2 & 1 & 4
\end{array}\right),\left(\begin{array}{llll}
2 & 5 & 1 & 4 \\
1 & 2 & 3 & 4
\end{array}\right):
$$

 guy nk

$$
A=\left(\begin{array}{cccc}
1 & 2 & \cdots & n \tag{4.4}\\
a_{1} & \alpha_{2} & \cdots & a_{n}
\end{array}\right)
$$

 jnilutip ufhumighg umuptipunud tid htpplh unnnuu qpulud utinu-

$$
E=\left(\begin{array}{ccc}
1 & 2 & \cdots \\
1 & \cdots & n \\
1
\end{array}\right)
$$

 unt n tipnus:

 uum

 htunlujuin.

 t $\frac{n!}{2}$:

 ņtuypnuf

$$
A \cdot B=\left(\begin{array}{lll}
1 & 2 & 345 \\
3 & 4 & 15
\end{array}\right) \cdot\left(\begin{array}{lll}
1 & 2 & 345 \\
1 & 3 & 5
\end{array}\right)=\left(\begin{array}{llll}
1 & 2 & 345 \\
5 & 2 & 143
\end{array}\right):
$$

 jnluutinp:
4.12. 2 wй
 (qnunuunuunhu) 2t:

Uuqugnıgg: Fulqueqtu, 4.11. oph\{uwhnud nhunuphyud A i B untquunpnıpjniutiph huufup

$$
A=\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{n}
\end{array}\right), B=\left(\begin{array}{llll}
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{n} \\
\beta_{1} & \beta_{2} & \ldots & \beta_{n}
\end{array}\right), C=\left(\begin{array}{llll}
\beta_{1} & \beta_{2} & \cdots & \beta_{n} \\
\gamma_{1} & \gamma_{2} & \cdots & \gamma_{n}
\end{array}\right):
$$

$$
\begin{aligned}
& (A B) C=\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
\beta_{1} & \beta_{2} & \cdots & \beta_{n}
\end{array}\right) \cdot\left(\begin{array}{llll}
\beta_{1} & \beta_{2} & \cdots & \beta_{n} \\
\gamma_{1} & \gamma_{2} & \cdots & \gamma_{n}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
\gamma_{1} & \gamma_{2} & \cdots & \gamma_{n}
\end{array}\right), \\
& A(B C)=\left(\begin{array}{cccc}
1 & 2 & \ldots & n \\
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{n}
\end{array}\right) \cdot\left(\begin{array}{llll}
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{n} \\
\gamma_{1} & \gamma_{2} & \cdots & \gamma_{n}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
\gamma_{1} & \gamma_{2} & \cdots & \gamma_{n}
\end{array}\right):
\end{aligned}
$$

$$
A \cdot E=E \cdot A=A:
$$

 ocunumb t uhuuln umppny:
 Lutph huufup

$$
A \cdot B=B \cdot A=E
$$

$$
A=\left(\begin{array}{cccc}
1 & 2 & \ldots & n \\
\alpha_{1} & \alpha_{2} & \ldots & \alpha_{n}
\end{array}\right)
$$

$$
A^{-1}=\left(\begin{array}{cccc}
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{n} \\
1 & 2 & \cdots & n
\end{array}\right)
$$

 untఇuựnfunıpjuuf:

$$
\left(\begin{array}{ccccc}
\cdots & \boldsymbol{l} & \cdots & \boldsymbol{j} & \cdots \tag{4.5}\\
\cdots & j & \cdots & \boldsymbol{i} & \cdots
\end{array}\right)
$$

 upununphin), np utnn nelah htunlyulp.

4.15. Ophtiul:

$$
\binom{12345}{25431}=(12)(15)(34)=(14)(24)(45)(34)(13):
$$

 यпи:

 dti: n-p

$$
\left(\begin{array}{ccccccc}
* * * & \alpha_{1} & \alpha_{2} & \alpha_{3} & \cdots & \alpha_{m-1} & \alpha_{m} \\
* * * \\
* * * & \alpha_{2} & \alpha_{3} & \alpha_{4} & \cdots & \alpha_{m} & \alpha_{1}
\end{array}\right)
$$

 $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right.$ uhuपnlikn hwinh

4.18. Ophtunl:

a) $\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 5 & 1 & 2\end{array}\right)=(13)(254)$:
b) $\binom{12345678}{52876143}=(156)(38)(47)$:

 ufegngny hturlumul dany.

$$
\left(\alpha_{1} \alpha_{2} \cdots \alpha_{k}\right)=\left(\alpha_{1} \alpha_{2}\right)\left(\alpha_{1} \alpha_{3}\right) \cdots\left(\alpha_{1} \alpha_{k}\right)
$$

UUSCト3LERT 2ES

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \tag{4.6}\\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{k 1} & a_{k 2} & \cdots & a_{k n}
\end{array}\right)
$$

Uwunhgh unupptipe huúupulquilnuu tif tpqne puntpuatipny:

 ujnilunuf:

 unhuwiulud $A=\left\{a_{i j}\right\}_{k \times n}$ i $B=\left\{b_{i j}\right\}_{p \times q}$ umunphgitinh huquuuupnipmuing uquiumunuu t , np $k=p, n=q$ la $a_{i j}=b_{i j}$ pnlnp $i=1,2, \ldots, k$;

 purujhí puquinıpjnikutnhg npht utiln:

 पňunıút $C=\left\{c_{i j}\right\}_{k \times n} \in M_{k \times n}$ ưunphgmid, npuntin $c_{i j}=a_{i j}+b_{i j}$ pninp $\boldsymbol{i}=1,2, \ldots, k ; j=1,2, \ldots, n$ hưuwp: Uנף η trupniu Lqptip $C=A+B$:

$$
\text { 4. 21. Oph\&uq: }\left(\begin{array}{lll}
1 & 1 & 2 \\
3 & 0 & 1 \\
4 & 2 & 3 \\
1 & 0 & 1
\end{array}\right)+\left(\begin{array}{lll}
2 & 1 & 3 \\
1 & 0 & 2 \\
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right)=\left(\begin{array}{lll}
3 & 2 & 5 \\
4 & 0 & 3 \\
5 & 3 & 4 \\
2 & 2 & 4
\end{array}\right)
$$

 Uwil Uh puluh whluhuju

1) $A+(B+C)=(A+B)+C$ (qnıqпрпиццииіпиpjnıí).

2) Suablugurd $A \in R_{k \times n}$ fuunphgh huifup qnjnıpmnit nıah

 $B=\left\{b_{i j}\right\}_{k \times n} \in M_{k \times n}$ duinnphguik, npuntin $b_{i j}=\lambda a_{i j}$ pninp $i=1,2, \ldots, k ;$ $J=1,2, \ldots, n$ huudup, lu qpnuu tid $B=\lambda A$ untupnu:
 pnuu.
3) $1 \cdot A=A$
4) $(\lambda \mu) A=\lambda(\mu A)$
5) $(\lambda+\mu) A=\lambda A+\mu A$
6) $\lambda(A+B)=\lambda A+\lambda B$:

4.25. Uuhbfutuntu: Thgnıp $A=\left\{a_{i j}\right\}_{k \times n} \in M_{k \times n}$ h $B=\left\{b_{i j}\right\}_{n \times s} \in$
 $C=\left\{c_{1 j}\right\}_{k \times s} \in R_{k \times s}$ fuinnphguiu, npuntn

$$
c_{i j}=\sum_{l=1}^{n} a_{i l} b_{l j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j}
$$

$\operatorname{pninp} i=1,2, \ldots, k ; j=1,2, \ldots, s$ husfup, b qunuf the $C=A B$ intupnu:
4.26. Ophtunl: $\mathrm{bptr}_{\mathrm{i}} A=\left(\begin{array}{lll}1 & 3 & 1 \\ 0 & 2 & 1 \\ 1 & 0 & 1\end{array}\right) \in \mathbb{R}_{3 \times 3}$ द $B=\left(\begin{array}{cc}3 & 1 \\ -1 & 0 \\ 2 & -1\end{array}\right) \in$

4.27. Ophtumy: Thgnup $A=\left(\begin{array}{cc}2 & 1 \\ -1 & 3\end{array}\right) \in \mathbb{R}_{2 \times 2}$ b $B=\left(\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right) \dot{\epsilon}$

 umunphgitp, npnig huufup $A B \neq B A$, wjuhhpi funnphgitph

4.28. Zuungnıpmia:

1) Suatumgud $A \in M_{k \times n}, B \in M_{n \times s}, C \in M_{s \times m}$ twunphgitinh

2) Yuutuywhwd $A \in M_{n \times n}$ fuunphgh huufup $A E=E A=A$, npıntr $E \in M_{n \times n} \mathbb{U}$
3) Sulahugud $A, B, P \in M_{k \times n}$ b $C, Q, R \in M_{n \times s}$ f(wunphgofliph huviup

$$
(A+B) C=A C+B C \quad \text { и } P(Q+R)=P Q+P R:
$$

 $\lambda \in M$ inupnh hwifup

$$
\lambda(A B)=(\lambda A) B=A(\lambda B)
$$

5) Yuufujuquwia $A \in M_{n \times n}$ uwinnhgh hwiwp

$$
A O=O A=O \in M_{n \times n}
$$

 B=O: Fuluuytu,

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right):
$$

$$
\begin{aligned}
A B & =U=\left\{u_{i t}\right\}_{k \times s^{\prime}}, B C=V=\left\{v_{i t}\right\}_{n \times m} \\
(A B) C & =S=\left\{s_{i j}\right\}_{k \times m^{\prime}} A(B C)=T=\left\{t_{i j}\right\}_{k \times m}
\end{aligned}
$$

Utiup uytung 5 uupugnigtik, in $A(B C)=(A B) C$, ujuphpi' $S=T$: nılutup, np

$$
u_{i p}=\sum_{q=1}^{n} a_{i q} b_{q p}, v_{q j}=\sum_{p=1}^{s} b_{q p} c_{p j},
$$

$$
\begin{aligned}
& s_{i J}=\sum_{p=1}^{s} u_{\lfloor p} c_{p J}=\sum_{p=1}^{s}\left(\sum_{q=1}^{n} a_{i q} b_{q p}\right) c_{p J}=\sum_{p=1}^{s} \sum_{q=1}^{n} a_{i q} b_{q p} c_{p j}, \\
& t_{i J}=\sum_{q=1}^{n} a_{i q} v_{q J}=\sum_{q=1}^{n} a_{i q}\left(\sum_{p=1}^{s} b_{q p} c_{p J}\right)=\sum_{q=1}^{n} \sum_{p=1}^{s} a_{i q} b_{q p} c_{p J},
\end{aligned}
$$

munhipli $s_{l j}=t_{i j} \mathrm{Fn}[\mathrm{np} i=1,2, \ldots, k ; j=1,2, \ldots, m$ huufun:
2) Thgnıp $A=\left\{a_{i j}\right\}_{n \times n}, E=\left\{b_{i j}\right\}_{n \times n}$ l $A E=\left\{c_{i j}\right\}_{n \times n}:$ Puikh np E
 l $b_{i j}=1, \operatorname{tipf} j=1,2, \ldots, n, h$

$$
c_{t j}=\sum_{k=1}^{n} a_{i k} b_{k j}=a_{i j} b_{j j}=a_{i j}
$$

 uqtu uumugnıg
3) Eupounptiup $\boldsymbol{A}=\left\{\boldsymbol{a}_{i /}\right\}_{k \times n}, B=\left\{b_{i j}\right\}_{k \times n}, C=\left\{c_{t y}\right\}_{n \times s}, \quad A+B=$ $U=\left\{u_{i j}\right\}_{k \times n^{\prime}}, A C=V=\left\{v_{i j}\right\}_{k \times s^{\prime}}, B C=W=\left\{w_{i j}\right\}_{k \times s^{\prime}},(A+B) C=T=$

$$
\begin{gathered}
t_{i j}=\sum_{q=1}^{n} u_{i q} c_{q i}=\sum_{q=1}^{n}\left(a_{i q}+b_{i q}\right) c_{q J}=\sum_{q=1}^{n}\left(a_{i q} c_{q j}+b_{i q} c_{q j}\right)= \\
=\sum_{q=1}^{n} a_{i q} c_{q j}+\sum_{q=1}^{n} b_{i q} c_{q j}=v_{l j}+w_{i j}
\end{gathered}
$$

 wuygnıg nuit $t P(Q+R)=P Q+P R$ huy
4) 'Thgnup $\lambda \in R, A=\left\{a_{i j}\right\}_{k \times n}, B=\left\{b_{i j}\right\}_{n \times s^{\prime}}, A B=U=\left\{u_{i j}\right\}_{k \times s^{\prime}}$

$$
\begin{aligned}
\lambda(A B) & =\left\{\lambda u_{i j}\right\}_{k \times s}, \lambda A=\left\{\lambda a_{i t}\right\}_{k \times n}, \lambda B=\left\{\lambda b_{i j}\right\}_{n \times s} \text { u, htunluwpupp, } \\
\lambda u_{i j} & =\lambda \sum_{q=1}^{n} a_{i q} b_{q j}=\sum_{q=1}^{n} \lambda\left(a_{i q} b_{q j}\right)=\sum_{q=1}^{n}\left(\lambda a_{i q}\right) b_{q j}=\sum_{q=1}^{n} a_{i q}\left(\lambda b_{q j}\right)
\end{aligned}
$$

pninn $t=1,2, \ldots, k ; j=1,2, \ldots, s$ hurfurp: Nıunh χ_{2} umphun $t i$ $\lambda(A B)=(\lambda A) B=A(\lambda B)$ huưuuwpnıpjniultipp:
5) Uju huunlynupjui wu्यugnugg htunbnuu t umunphgitph fuquuw-

 qp

$$
A=\operatorname{diag}\left[a_{11}, a_{22}, \ldots, a_{n n}\right]
$$

 uyhuny, tett

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{k 1} & a_{k 2} & \cdots & a_{k n}
\end{array}\right),
$$

ưưய

$$
A^{T}=\left(\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{k 1} \\
a_{12} & a_{22} & \cdots & a_{k 2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 n} & a_{2 n} & \cdots & a_{k n}
\end{array}\right)
$$

Thgnıp $A=\left\{a_{i j}\right\}_{k \times n}$ и $A^{T}=\left\{a_{i j}^{\prime}\right\}_{n \times k}$: Uјף пиццpnıu $a_{i j}^{\prime}=a_{j 1}$, pninp $i=1,2, \ldots, n ; j=1,2, \ldots, k$ huufup:
4.29. Sunalnıppnif:

$$
(A B)^{T}=B^{T} A^{T}
$$

hǔuшuwinıpjnılin:
 шџш

$$
(A+B)^{T}=A^{T}+B^{T}:
$$

 nuuph huıfup

$$
(\lambda A)^{T}=\lambda A^{T}:
$$

 $(s \times k)$-цuyhম: Thgnıp $A=\left\{a_{i j}\right\}_{k \times n}, B=\left\{b_{i j}\right\}_{n \times s}, A B=C=\left\{c_{t i}\right\}_{k \times s}$, $A^{T}=\left\{a_{i j}^{\prime}\right\}_{n \times k}, B^{T}=\left\{b_{i j}^{\prime}\right\}_{s \times n^{\prime}},(A B)^{T}=\left\{c_{i j}^{\prime}\right\}_{s \times k^{\prime}} B^{T} A^{T}=\left\{d_{i j}\right\}_{s \times k}: Z Z_{u p^{-}}$ पưunp t wequgnighi, nn $c_{i j}^{\prime}=d_{i j}$ pnLnp $i=1,2, \ldots, s ; j=1,2, \ldots, k$ hứwp: Fulquutiu,

$$
d_{i j}=\sum_{q=1}^{n} b_{i q}^{\prime} a_{q j}^{\prime}=\sum_{q=1}^{n} b_{q i} a_{j q}=\sum_{q=1}^{n} a_{i q} b_{q i}=c_{\mu l}=c_{i j}^{\prime}
$$

pnın $i=1,2, \ldots, s ; J=1,2, \ldots, k$ hwufun: Uuqugnıggi uyuphnपur 5:

 шјпй t:

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \tag{4.7}\\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)
$$

$$
\begin{equation*}
a_{1 \alpha_{1}} a_{2 \alpha_{2}} \cdots a_{n \alpha_{n}} \tag{4.8}
\end{equation*}
$$

untuph upnumpjuititpp, npunti $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ plintpuitipn ququinus tif 1,2,...n pulthp nplit int

$$
\alpha=\left(\begin{array}{cccc}
1 & 2 & \ldots & n \tag{4.9}\\
\alpha_{1} & \alpha_{2} & \ldots & \alpha_{n}
\end{array}\right)
$$

 puguumulyul dzulany hulqunuly η tuppnud:
 Gum

$$
\operatorname{det}(A),\left|a_{i j}\right|_{n \times n},\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & 2 & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right|
$$

 punnilitip
 stup qniutioulup, np

$$
\operatorname{det}(A)=\sum_{\alpha \in S_{n}} \operatorname{sgn}(\alpha) \cdot a_{1 a_{1}} a_{2 \alpha_{2}} \cdots a_{n a_{n}}:
$$

4.31. Tlunnit (2uunqnıpmiti 1): Чuufujulquí A punulqniuh

$$
\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right):
$$

 onlpjuik

$$
a_{1 \alpha_{1}} a_{2 \alpha_{2}} \cdots a_{n a_{n}}
$$

 npn24nuut

$$
\alpha=\left(\begin{array}{cccc}
1 & 2 & \ldots & n \\
\alpha_{1} & \alpha_{2} & \ldots & a_{n}
\end{array}\right)
$$

$$
\alpha^{-1}=\left(\begin{array}{cccc}
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{n} \\
1 & 2 & \cdots & n
\end{array}\right)
$$

 jh:

$$
\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{11} & a_{i 2} & \cdots & a_{i n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{j 1} & a_{j 2} & \cdots & a_{j n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right|=-\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{i 1} & a_{j 2} & \cdots & a_{i n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{i 1} & a_{12} & \cdots & a_{i n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right| \vdots
$$

$$
a_{1 \alpha_{1}} \cdots a_{i a_{i}} \cdots a_{j \alpha_{j}} \cdots a_{n a_{n}}
$$

$$
\alpha=\left(\begin{array}{cccccc}
1 & \cdots & i & \cdots & j & \cdots
\end{array}\right)
$$

$$
a_{1 a_{1}} \cdots a_{i a_{i}} \cdots a_{j a_{j}} \cdots a_{n a_{n}}
$$

ulanuuf M2wing ynpanth

$$
\beta=\left(\begin{array}{cccccc}
1 & \cdots & l & \cdots & \cdots & n \\
a_{1} & \cdots & \alpha_{j} & \cdots & \alpha_{l} & \cdots
\end{array} \alpha_{n}\right)
$$

4.34. T\&
 qnnjh, ujuhlipa'

$$
\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{11} & a_{12} & \cdots & a_{1 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{11} & a_{12} & \cdots & a_{1 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right|=0
$$

4.35. T\&qnif (2unngnipmit 5): Gpt umunhgh nplit unnh (ujuili) pninn unupptpp fuqưumuunltín nplit k umppny M fuaq-
 uņư

$$
\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
\vdots & \vdots & \vdots & \vdots \\
k a_{11} & k a_{i 2} & \cdots & k a_{i n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right|=k \cdot\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{i 1} & a_{l 2} & \cdots & a_{i n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right|:
$$

$U_{\text {uqugnigg: }}$ Thgnıp $A=\left\{a_{i}\right\}_{n \times n}$ umunphgh i-p unņp fuquuu-

$$
\begin{aligned}
& \operatorname{det}(B)=\sum_{\alpha \in S_{n}} \operatorname{sgn}(\alpha) \cdot a_{1 \alpha_{1}} a_{2 \alpha_{2}} \cdots\left(k a_{i \alpha_{1}}\right) \cdots a_{n \alpha_{n}}= \\
& =k \cdot \sum_{\alpha \in S_{n}} \operatorname{sgn}(\alpha) \cdot a_{1 \alpha_{1}} a_{2 \alpha_{2}} \cdots a_{i \alpha_{1}} \cdots a_{n \alpha_{n}}=k \cdot \operatorname{det}(A):
\end{aligned}
$$

 ujuhlupi'

$$
\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{l 1} & a_{i 2} & \cdots & a_{i n} \\
\vdots & \vdots & \vdots & \vdots \\
k a_{i 1} & k a_{i 2} & \cdots & k a_{i n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right|=\mathbf{0}
$$

 unuupumi unntiph (ujnilutph) htin, ujuplipa'

$$
\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{11}^{\prime}+a_{i 1}^{\prime \prime} & a_{i 2}^{\prime}+a_{i 2}^{\prime \prime} & \cdots & a_{l n}^{\prime}+ \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1}^{\prime \prime} & a_{n 2} & \cdots & a_{n n}
\end{array}\right|=\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{i 1}^{\prime} & a_{i 2}^{\prime} & \cdots & a_{i n}^{\prime} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right|+\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{l 1}^{\prime \prime} & a_{i 2}^{\prime \prime} & \cdots & a_{i n}^{\prime \prime} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right|:
$$

$$
\begin{gathered}
d=\sum_{\alpha \in S_{n}} \operatorname{sgn}(\alpha) \cdot a_{1 a_{1}} a_{2 a_{2}} \cdots\left(a_{i \alpha_{1}}^{\prime}+a_{i \alpha_{1}}^{\prime \prime}\right) \cdots a_{n a_{n}}= \\
=\sum_{\alpha \in S_{n}} \operatorname{sgn}(\alpha) \cdot a_{1 \alpha_{1}} a_{2 a_{2}} \cdots a_{i \alpha_{1}}^{\prime} \cdots a_{n a_{n}}+\sum_{\alpha \in S_{n}} \operatorname{sgn}(\alpha) \cdot a_{1 \alpha_{1}} a_{2 a_{2}} \cdots a_{i a_{1}}^{\prime \prime} \cdots a_{n \alpha_{n}} \\
=d^{\prime}+d^{\prime \prime}:
\end{gathered}
$$

4.38. Dtinnut (zuunhnıppntí 8): Gpt duunphgh npht unn (unnil)

$$
\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{i 1}+k a_{j 1} a_{i 2}+k a_{j 2} & \cdots & a_{l n}+k a_{j n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{l 1} & a_{j 2} & \cdots & a_{j n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right|=\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{i 1} & a_{i 2} & \cdots & a_{i n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{j 1} & a_{j 2} & \cdots & a_{j n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right|
$$

 uuunhgh npn2hshu:

4.40. Thennuf (2wnhnippate 10): Ept uwuphgh nplat unn

 ennfaytu huyumuen t qinjh:

LIUSBruLERC

 huufupitipny uyniutipnuu:

 utpe:

 $(-1)^{s}$ uquenny, nputn $s=i_{1}+\cdots+i_{k}+j_{1}+\cdots+j_{k}$: Uju uwhiuu-

4.41. Luffiu: Thgnıp d hulenghumintuf $t n-\mathrm{pn}(n>1)$ 4unqh

 nangesh ytuldh dulu malyminnu.

$$
d=\left|\begin{array}{ccc|ccc}
a_{11} & \cdots & a_{1 k} & a_{1, k+1} & \cdots & a_{1 n} \\
\vdots & M & \vdots & \vdots & \vdots & \vdots \\
a_{k 1} & \cdots & a_{k k} & a_{1, k+1} & \cdots & a_{k n} \\
\hline a_{k+1,1} & \cdots & a_{k+1, k} & a_{k+1, k+1} & \cdots & a_{k+1, n} \\
\vdots & \vdots & \vdots & \vdots & \mathcal{M}^{*} & \vdots \\
a_{n 1} & \cdots & a_{n k} & a_{n, k+1} & \cdots & a_{n n}
\end{array}\right|,
$$

 wilynilanux \mathfrak{h}, puilh np $s=1+\cdots+k+1+\cdots+k=2 \cdot(1+\cdots+k)$, шищ $A=(-1)^{5} \boldsymbol{M}^{*}=\boldsymbol{M}^{*}$:
 wianuux, npuntin I huinqhuminnul t

$$
\left(\begin{array}{cccc}
1 & 2 & \cdots & k \\
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{k}
\end{array}\right)
$$

int
 uhinph nplit wiquul, npuntin m ununnl lizulaukưud t

$$
\left(\begin{array}{cccc}
k+1 & k+2 & \cdots & n \\
\beta_{k+1} & \boldsymbol{\beta}_{k+2} & \cdots & \boldsymbol{\beta}_{n}
\end{array}\right)
$$

 numptiph

$$
(-1)^{l+m} a_{1 \alpha_{1}} a_{2 \alpha_{2}} \cdots a_{k a_{k}} a_{k+1, \beta_{k+1}} a_{k+2, \beta_{k+2}} \cdots a_{n \beta_{n}}
$$

 पnp ntuyph uxumgnugp:

Ujof winn
 hitpny ujnilutpnuu, plif nqnuf

$$
t_{1}<i_{2}<\cdots<i_{k} \| J_{1}<J_{2}<\cdots<j_{k}:
$$

$$
\left(i_{1}-1\right)+\left(t_{2}-2\right)+\cdots+\left(i_{k}-k\right)=\left(i_{1}+i_{2}+\cdots+t_{k}\right)-(1+2+\cdots+k)
$$

nhppuụnjunipjnilu:

$$
\left(J_{1}-1\right)+\left(J_{2}-2\right)+\cdots+\left(j_{k}-k\right)=\left(J_{1}+j_{2}+\cdots+j_{k}\right)-(1+2+\cdots+k)
$$

wiqquu:
 unnntiph t unnulutiph

$$
\begin{aligned}
\left(i_{1}+i_{2}+\cdots+i_{k}\right) & +\left(J_{1}+J_{2}+\cdots+f_{k}\right)-2(1+2+\cdots+k)= \\
& =s-2(1+2+\cdots+k)
\end{aligned}
$$

$$
s=\left(i_{1}+i_{2}+\cdots+i_{k}\right)+\left(j_{1}+j_{2}+\cdots+j_{k}\right)
$$

 puny:

$$
f \cdot(-1)^{s} f^{\prime}=(-1)^{s} f \cdot f^{\prime}
$$

 $(-1)^{s} f \cdot f^{\prime}$ upunuhujunnpogniup ultunp t hulunhuuluu d npneheh wanuud: Litujump wurugnugh wupuninum t :
 upnjniligz.

quinunn k-p

 4nไuunux:

Thgnıp

$$
\begin{equation*}
a_{1 \alpha_{1}} a_{2 \alpha_{2}} \cdots a_{n \alpha_{n}} \tag{4.10}
\end{equation*}
$$

$$
\begin{equation*}
a_{i_{1} a_{i_{1}}} a_{i_{2} a_{i_{2}}} \cdots a_{i_{k} \alpha_{i_{k}}} \tag{4.11}
\end{equation*}
$$

 huruwpitph unntipny: Epte $i_{1}, i_{2}, \ldots, i_{k}$ huufuphtipny unnitiph t

 t Gumb ujnifitiph η tuyph huviup):

 unne unumanu tixp

$$
d=a_{i 1} A_{i 1}+a_{i 2} A_{i 2}+\cdots+a_{i n} A_{i n}
$$

 ujuil unupptap.

$$
d=a_{1 j} A_{1 j}+a_{2 j} A_{2 j}+\cdots+a_{n j} A_{n j}
$$

 pi quinq

$$
d=\left|\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & a_{22} & a_{23} & \cdots & a_{2 n} \\
0 & 0 & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & a_{n n}
\end{array}\right|
$$

$$
d=a_{12}\left|\begin{array}{cccc}
a_{22} & a_{23} & \cdots & a_{2 n} \\
0 & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & a_{n n}
\end{array}\right|
$$

$$
d=a_{11} a_{22} a_{33} \cdots a_{n n}
$$

$$
d=\left|\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
a_{1} & a_{2} & a_{3} & \cdots & a_{n} \\
a_{1}^{2} & a_{2}^{2} & a_{3}^{2} & \cdots & a_{n}^{2} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{1}^{n-1} & a_{2}^{n-1} & a_{3}^{n-1} & \cdots & a_{n}^{n-1}
\end{array}\right|
$$

 ๆtuppnıu nulatiap

$$
\left|\begin{array}{cc}
1 & 1 \\
a_{1} & a_{2}
\end{array}\right|=a_{2}-a_{1}:
$$

 Cuwlup

$$
d=\left|\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
0 & a_{2}-a_{1} & a_{3}-a_{1} & \cdots & a_{n}-a_{1} \\
0 & a_{2}\left(a_{2}-a_{1}\right) & a_{3}\left(a_{3}-a_{1}\right) & \cdots & a_{n}\left(a_{n}-a_{1}\right) \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & a_{2}^{n-2}\left(a_{2}-a_{1}\right) & a_{3}^{n-2}\left(a_{3}-a_{1}\right) & \cdots & a_{n}^{n-2}\left(a_{n}-a_{1}\right)
\end{array}\right|
$$

$$
d=\left|\begin{array}{cccc}
a_{2}-a_{1} & a_{3}-a_{1} & \cdots & a_{n}-a_{1} \\
a_{2}\left(a_{2}-a_{1}\right) & a_{3}\left(a_{3}-a_{1}\right) & \cdots & a_{n}\left(a_{n}-a_{1}\right) \\
\vdots & \vdots & \vdots & \vdots \\
a_{2}^{n-2}\left(a_{2}-a_{1}\right) & a_{3}^{n-2}\left(a_{3}-a_{1}\right) & \cdots & a_{n}^{n-2}\left(a_{n}-a_{1}\right)
\end{array}\right|
$$

npn2her, nphg htunn pninp ujnulitphg qnıpu huilitny puqhwinut

$$
d=\left(a_{2}-a_{1}\right)\left(a_{3}-a_{1}\right) \cdots\left(a_{n}-a_{1}\right)\left|\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
a_{2} & a_{3} & \cdots & a_{n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{2}^{n-2} & a_{3}^{n-2} & \cdots & a_{n}^{n-2}
\end{array}\right|:
$$

$$
\begin{aligned}
d=\left(a_{2}-a_{1}\right)\left(a_{3}\right. & \left.-a_{1}\right) \cdots\left(a_{n}-a_{1}\right) \cdot \prod_{2 \leq j<i \leq n}\left(a_{l}-a_{j}\right)= \\
& =\prod_{1 \leq j<i \leq n}\left(a_{i}-a_{j}\right):
\end{aligned}
$$

 upliptnptung:
4.45. Phaphrf: Eplni punnulynup funaphgitiph upnumpjuih
 ujuhlupi' topt $A, B \in M_{n \times n}$, uuqu

$$
|A B|=|A| \cdot|B|:
$$

Uuymgnıg: ?-punuplitip 2n-pı quinqh odulonul

$$
d=\left|\begin{array}{cc}
A & O_{n} \tag{4.12}\\
-E_{n} & B
\end{array}\right|
$$

$$
d=|A| \cdot(-1)^{2(1+2+\cdots+n)} \cdot|B|=|A| \cdot|B|:
$$

$$
d=\left|\begin{array}{cc}
O_{n} & C \tag{4.13}\\
-E_{n} & B
\end{array}\right|
$$

untuph, npuntin $C=A B$, oquyltinu npnghsatiph (8) huinlqnupjnuluhg: Yן Glquunuwnf quunu\{uixp, np

$$
\begin{gathered}
d=|C| \cdot(-1)^{(1+2+\cdots+n)+(n+1+n+2+\cdots+n+n)} \cdot\left|-E_{n}\right| \\
=|C| \cdot(-1)^{n(2 n+1)} \cdot(-1)^{n}=|C| \cdot(-1)^{2 n(n+1)}=|C|:
\end{gathered}
$$

 pnıponilip:

 $A=\left\{a_{i j}\right\}_{n \times n^{\prime}}, B=\left\{b_{i j}\right\}_{n \times n^{\prime}}, C=\left\{c_{i j}\right\}_{n \times n^{\prime}}$, piq npnuu $c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}$,

$$
d=\left\lvert\, \begin{array}{|cccc}
\left.\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array} \right\rvert\, & \left.\begin{array}{|cccc}
-1 & 0 & \cdots & 0 \\
0 & -1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & -1
\end{array} \right\rvert\, & \left.\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 0
\end{array} \right\rvert\, \\
\left.\begin{array}{ccccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
b_{n 1} & b_{n 2} & \cdots & b_{n n}
\end{array} \right\rvert\,
\end{array}\right.
$$

untupni: Uju npnoker dhuqunjuting ujuuqtu, np $a_{i j}$ numptiph

 щыийһйis.

$$
\begin{gathered}
c_{11}=a_{11} b_{11}+a_{12} b_{21}+\cdots+a_{1 n} b_{n 1} \\
c_{12}=a_{11} b_{12}+a_{12} b_{22}+\cdots+a_{1 n} b_{n 2} \\
\cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots \\
c_{1 n}=a_{11} b_{1 n}+a_{12} b_{2 n}+\cdots+a_{1 n} b_{n n}
\end{gathered}
$$

 ntuppnư:
 ghg quit utily
 Uunnphgitiph wpuminjuwn hwinh
4.49. Uuhufuknuf: Ypgnıp $A, E \in M_{n \times n}$, npuntn E úhuuln
 hulququed umunphg, tpot untinh miditu

$$
A B=B A=E
$$

 पurd t Gquinulyth A^{-1} uhfunlnu:

$$
B_{1}=B_{1} E=B_{1}\left(A B_{2}\right)=\left(B_{1} A\right) B_{2}=E B_{2}=B_{2}:
$$

 wlultpuiflih 5 :

 $|A| \cdot\left|A^{-1}\right|=1$: Ztunlumpun $|A| \neq 0$ i A umunhgid wiultpurtuph $5:$

$$
A^{-1}=d^{-1} \cdot\left(\begin{array}{cccc}
A_{11} & A_{21} & \cdots & A_{n 1} \tag{4.14}\\
A_{12} & A_{22} & \cdots & A_{n 2} \\
\vdots & \vdots & \vdots & \vdots \\
A_{1 n} & A_{2 n} & \cdots & A_{n n}
\end{array}\right) \text {, }
$$

 quanuph utionupjnituny:

Unnıqtiap, np untyh nulah $A^{-1} A=E$ huuquumpnupgnian (ujnıu'
 Gliup, np

$$
d=\left|\begin{array}{ccccc}
a_{11} & \cdots & a_{1 j} & \cdots & a_{1 n} \\
a_{21} & \cdots & a_{2 j} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{n 1} & \cdots & a_{n j} & \cdots & a_{n n}
\end{array}\right|:
$$

$$
d_{j}=\left|\begin{array}{ccccc}
a_{11} & \cdots & b_{1} & \cdots & a_{1 n} \\
a_{21} & \cdots & b_{2} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{n 1} & \cdots & b_{n} & \cdots & a_{n n}
\end{array}\right|
$$

$$
d_{j}=b_{1} A_{1 j}+b_{2} A_{2 j}+\cdots+b_{n} A_{n j}:
$$

 hulipuhew 2 qulquil prugivis htun, npinty $i=1,2, \ldots, n$:

UみU tupuptiqp $b_{1}=a_{1 k}, b_{2}=a_{2 k}, \ldots, b_{n}=a_{n k}(1 \leq k \leq n)$, uf-

Uju unhuny untrin nufu

$$
a_{1 k} A_{1 j}+a_{2 k} A_{2 j}+\cdots+a_{n k} A_{n j}=\left\{\begin{array}{l}
d, \operatorname{tpt} k=j \\
0, \operatorname{tpt} k \neq j
\end{array}\right.
$$

puikudlap: Thgnıp $A^{-1} A=\left\{t_{1 j}\right\}_{n \times n}$: Uyף ףtuppnuu

$$
\begin{gathered}
t_{i j}=d^{-1} A_{1 i} a_{1 j}+d^{-1} A_{2 i} a_{2 j}+\cdots+d^{-1} A_{n!} a_{n j}= \\
=d^{-1}\left(a_{1 j} A_{1 i}+a_{2 j} A_{2 i}+\cdots+a_{n j} A_{n i}\right)=\left\{\begin{array}{l}
1, \text { tpt } i=j, \\
0, \text { tpt } i \neq j
\end{array}\right.
\end{gathered}
$$

 Uurning F_{l}

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

 htunknư 54.45 ptinptufing: Ujnıu पqnךufg

$$
\begin{aligned}
& (A B)\left(B^{-1} A^{-1}\right)=\left((A B) B^{-1}\right) A^{-1}=\left(A\left(B B^{-1}\right)\right) A^{-1}=(A E) A^{-1}=A A^{-1}=E \\
& \mathrm{l} \\
& \left(B^{-1} A^{-1}\right)(A B)=\left(\left(B^{-1} A^{-1}\right) A\right) B=\left(B^{-1}\left(A^{-1} A\right)\right) B=\left(B^{-1} E\right) B=B^{-1} B=E:
\end{aligned}
$$

$$
\begin{gathered}
e_{1}=\left(a_{11}, a_{12}, \ldots, a_{1 n}\right), \\
e_{2}=\left(a_{21}, a_{22}, \ldots, a_{2 n}\right), \\
\ldots \ldots, \ldots \ldots \\
e_{m}=\left(a_{m 1}, a_{m 2}, \ldots, a_{m n}\right)
\end{gathered}
$$

 ptinh huruup

$$
\begin{gathered}
k_{1} e_{1}+k_{2} e_{2}+\cdots+k_{m} e_{m}= \\
=\left(k_{1} a_{11}+k_{2} a_{21}+\cdots+k_{m} a_{m 1}, k_{1} a_{12}+k_{2} a_{22}+\cdots+k_{m} a_{m 2} \cdots,\right. \\
\left.k_{1} a_{1 n}+k_{2} a_{2 n}+\cdots+k_{m n} a_{m n}\right)
\end{gathered}
$$

 smptia wilquilu, tipt $k_{1} e_{1}+k_{2} e_{2}+\cdots+k_{m} e_{m}=0$ huuluuupnipgniuhg hturlinul t, $n \mathrm{n} \boldsymbol{k}_{1}=k_{2}=\cdots=k_{m}=0$:

 qniduluhghtipg qunjulquitutit:

Lquantup, $n p$ qpnjulqui पtiqunn-иnn uqupnitulqnク e_{1}, e_{2}, \ldots,

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{s 1} & a_{s 2} & \cdots & a_{s n}
\end{array}\right)
$$

$$
\begin{gathered}
e_{1}=\left(a_{i 1}, a_{12}, \ldots, a_{t n}\right), t=1,2, \ldots, s, \\
f_{1}=\left(\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{3 j}
\end{array}\right), j=1,2, \ldots, n:
\end{gathered}
$$

 पшưujulquit k ujnid, $k \leq \min (s, n): C i u n p l u d$ unntiph h ujnilutph humuduid untritniud quinunn umpptpp ququinud tis k-pn quanqh

 Luxuluup ptinptufh, $(k+j)-\mathrm{p} \eta$ quangh ($k<k+j \leq \min (s, n)$) gulu-

 nuiaqp huufununuu t huulumup qnnjh:

 julyuif:

$$
\Delta_{i}=\left|\begin{array}{cccc}
a_{11} & \cdots & a_{1 r} & a_{1 l} \\
\vdots & \vdots & \vdots & \vdots \\
a_{r 1} & \cdots & a_{r r} & a_{r l} \\
a_{t 1} & \cdots & a_{t r} & a_{i l}
\end{array}\right|
$$

 htunhupun, innhg huyumump \hbar qnnjh:

 unugnusp hulinhuminnu $t D$ fhenpp: Ful tipt $1 \leq J \leq r$, wuqua Δ_{t}

$$
A_{j}=(-1)^{(r+1)+j}\left|\begin{array}{ccccccc}
a_{11} & \cdots & a_{1,-1} & a_{1, j+1} & \cdots & a_{1 r} & a_{11} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
a_{r 1} & \cdots & a_{r j-1} & a_{r j+1} & \cdots & a_{r r} & a_{r 1}
\end{array}\right|
$$

 unulumup.

$$
a_{t 1} A_{1}+a_{t 2} A_{2}+\cdots+a_{t r} A_{r}+a_{l 1} D=0,
$$

$$
a_{l l}=\left(-D^{-1} A_{1}\right) a_{l 1}+\left(-D^{-1} A_{2}\right) a_{12}+\cdots+\left(-D^{-1} A_{r}\right) a_{t r}:
$$

Ujuuphunu, A ưunphgh unniatph huufulquipqnuf quinutgg unu-

 nuluqhu:

 puny qonptit uitquulu unntiph puikuilht:

9L＾RH5

чกกツFしUSしも「 กトてุ々 ๒ч

 ulupny：

 tuplun

 qппигjuuf:

 unigntpjnilag.

$$
\begin{equation*}
A B+B C=A C: \tag{5.1}
\end{equation*}
$$

 ๆtuppnid $A B+B C=A A+A C=0+A C=A C$: Utuugur ntupptpe uunnıqul hupinnunnuju:

 htinn uquर्uduuln

 unцưठ unuignghi:

$$
\begin{equation*}
M_{1} M_{2}=x_{2}-x_{1}: \tag{5.2}
\end{equation*}
$$

$$
O M_{1}+M_{1} M_{2}=O M_{2}
$$

npusting 4

$$
M_{1} M_{2}=O M_{2}-O M_{1}:
$$

Uuluujk $O M_{2}=x_{2}$ \& $O M_{1}=x_{1}$, htunluupup, $M_{1} M_{2}=x_{2}-x_{1}$, ufl

 quil t:)

ᄂ4. 5.2:
乙4. 5.3:
5.5. Phophuf: bpt $M_{1}\left(x_{1}\right)$) $M_{2}\left(x_{2}\right)$ huanhumannu tid plujhis
 wu्ч $d=\left|x_{2}-x_{1}\right|$:

 wuyugniglud 5 :
5.6. Ophinul: Spupd tu $A(5), B(-1), C(-8), D(2)$ 4tuntipe:

Lnıbnuf: Zuukuduju 5.4. ptaptufh, nuitiap, np
$A B=-1-5=-6, C D=2-(-8)=10, D B=-1-2=-3$:
 jnilun:

Lnıסnıu:: Zuufuduju 5.5. ptontuff $d=|-2-3|=|-5|=5:$

 Σ^{w}

 unulugppitip
 opnhkuunktiph wnulagp:

 hujugitiph hpuptipg lizudulqtiop M_{x} и M_{y} (iquup 5.4):
 Guwnitip lyzulnui tid

$$
x=O M_{x} \cup y=O M_{y}
$$

 hwuyumbh utiontpjnilip: M lthunh upughu

ᄂ4. 5.4:

 $\boldsymbol{M}(x, y)$ qnumnnufg:

 jnilug luquinulutiap ρ upúņny ($\rho=|O M|$), hulf θ uhuqniny wid wiquntín, npny huplquilnn t upenint $O A$ runuquajpe Uplez $O M$ Cunuquipp hain huunulutin $(\theta=\angle A O M)$: θ wilynilep hhuu-

ᄂ4. 5.5:

 htigg ujk, nре puyumpunnud t

$$
-\pi<\theta \leq \pi
$$

 undtp:

L4. 5.6:

 htin, hul plitnujhí unuligpe upughuutiph npulquis पhumwnulugph htin (ulqup 5.6): Fugh win, plitnujhis wily-
 fuptiup uqnnujuitipis wis nuqnnipJuuf, nqny huplquinn t winntil $O x$ пpulqui hhumunmignpe, npuytuqh wis quapruqnuju nuphy huuntalyh $O y$ приulumi hhumunnulugph htun:

 nıף
 ntuppnud unuinnu tidp

$$
\begin{aligned}
& O M_{x}=|O M| \cos \theta \\
& O M_{y}=|O M| \sin \theta
\end{aligned}
$$

huuluumpnipjniditnp: Eq puik np $|O M|=\rho, O M_{x}=x \operatorname{li} O M_{y}=y$, wuru unuilent tixp

$$
\begin{equation*}
x=\rho \cos \theta, y=\rho \sin \theta \tag{5.3}
\end{equation*}
$$

$$
\begin{equation*}
\rho=\sqrt{x^{2}+y^{2}}, \tan \theta=\frac{y}{x} \tag{5.4}
\end{equation*}
$$

Thgnup unpulud tíu u unuligep \mathbf{l} npits $\overline{M_{1} M_{2}}$ huunlud (huqup 5.7): \boldsymbol{M}_{1} L M_{2} htuntiphg hetgitilup nuqumumjugith u wnulugph प|pue la lipuigg

 $\overline{P_{1} P_{2}}$ huunuludh uturnıpinuiap qňlnuu

24.5.7:
 unkưnu htinlugul huuturumpnipjuid untupnu.

$$
u P_{u} \overline{M_{1} M_{2}}=P_{1} P_{2}
$$

5.10. Atnptaf: Yuufujulumi $M_{1}\left(x_{1}, y_{1}\right)$ is $M_{2}\left(x_{2}, y_{2}\right)$ Ltintiph
 unulugpitiph पpu unplnut til

$$
X=x_{2}-x_{1}, Y=y_{2}-y_{1}
$$

puluudlutpny:

 Ujuinting h, puu 5.4. ptinptufh, $P_{1} P_{2}=x_{2}-x_{1}$: Ujniu qniufing

L4. 5.8:

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

pulumdiny:

$$
d=\sqrt{M_{1} N^{2}+M_{2} N^{2}}:
$$

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}:
$$

مtinptufu uuqugntgque t:

 quuph puiduditipe unminnul the

$$
X=d \cos \theta, Y=d \sin \theta
$$

 pnipjuik l plitnumhi midyjuid uhgngny:

$$
x_{2}-x_{1}=d \cos \theta, y_{2}-y_{1}=d \sin \theta
$$

पưu

$$
\cos \theta=\frac{x_{2}-x_{1}}{d}, \sin \theta=\frac{y_{2}-y_{1}}{d}, \tan \theta=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}:
$$

$$
u p_{u} \overline{M_{1} M_{2}}=d \cos \varphi
$$

 nlunh $u \boldsymbol{p}_{u} \overline{M_{1} M_{2}}=d \cos \varphi$ puidudinnu φ uldynilig quptint

ᄂ4. 5.10:

ᄂ4. 5.11:

Ujuwhunul, \measuredangle_{2} umphen 2 htunlumin.

 hpufumpuid intjinl pjuil (5.3. ptaptuf) $O M_{x}=0 O_{x}^{\prime}+O_{x}^{\prime} M_{x}$, npuntinhg

 Gumup, np $y=y^{\prime}+b$: Ujuuphund,

$$
x=x^{\prime}+a, \quad y=y^{\prime}+b:
$$

 tuule htunlupuil untupny. $x^{\prime}=x-a$ l $y^{\prime}=y-b$:

24. 5.12:

ᄂ4. 5.13:

 x, y upunuhmunnuu tí x^{\prime}, y^{\prime} uhengnul, पuxu hulpunulqू:

$$
x=\rho \cos \theta, \quad y=\rho \sin \theta:
$$

Uưqumutru

$$
x^{\prime}=\rho \cos \theta^{\prime}, \quad y^{\prime}=\rho \sin \theta^{\prime}:
$$

Ujuyhuny,

$$
\begin{gathered}
x=\rho \cos \theta=\rho \cos \left(\theta^{\prime}+\alpha\right)=\rho\left(\cos \theta^{\prime} \cos \alpha-\sin \theta^{\prime} \sin \alpha\right)= \\
=\rho \cos \theta^{\prime} \cos \alpha-\rho \sin \theta^{\prime} \sin \alpha=x^{\prime} \cos \alpha-y^{\prime} \sin \alpha \\
y=\rho \sin \theta=\rho \sin \left(\theta^{\prime}+\alpha\right)=\rho\left(\cos \theta^{\prime} \sin \alpha+\sin \theta^{\prime} \cos \alpha\right)= \\
=\rho \cos \theta^{\prime} \sin \alpha+\rho \sin \theta^{\prime} \cos \alpha=x^{\prime} \sin \alpha+y^{\prime} \cos \alpha:
\end{gathered}
$$

Ytpquuqtu,

$$
\begin{aligned}
& x=x^{\prime} \cos \alpha-y^{\prime} \sin \alpha \\
& y=x^{\prime} \sin \alpha+y^{\prime} \cos \alpha:
\end{aligned}
$$

$$
\begin{gathered}
x^{\prime}=x \cos \alpha+y \sin \alpha \\
y^{\prime}=-x \sin \alpha+y \cos \alpha
\end{gathered}
$$

puluudhtinp:

9L』ntu 6

§ 6.1. ЧืЧSAFF LUUYUSARABnkLC.

 huunuury htin:

 Lutph quulth:

 पчuðnu:
6.2. Uwhufutinnt: Ytuqunpatipn qneqnud tid huyumump, typt

 4tiptup uluph intupnu:

$$
a=\overline{A B}:
$$

 a पtuqnaph intnumpniu:

 untiquaptiup his-np utti O htung (quanngtup mbuyhup $\overline{O A}$ is $\overline{O B}$

 jntuhg:

 jusip):

乡tiqunnh upn

$$
\operatorname{uq}_{u} \overline{A B}=A_{u} B_{u}:
$$

pmikituph humnnuf u unulagph htun npn2nuu $t A_{u}$ is B_{u} qtuntipn

 phil):

24.6.1:

 unnjtigheule v unuligph पpu: fwih op u l v unulugpitipp

 puncig. $A_{u} B_{u}=A C$: Zthonlurpup

$$
u_{P_{u}} \overline{A B}=w_{p_{v}} \overline{A B}:
$$

 tunuju huppnipjnilinis, wu्ұu

$$
u{p_{v}}_{v} \overline{A B}=|\overline{A B}| \cos \varphi:
$$

 tup, np

$$
\underline{u P_{u}} \overline{A B}=|\overline{A B}| \cos \varphi:
$$

$$
u P_{u} a=|a| \cos \varphi:
$$

 walujucu qnuhtiniuny:

 unuinnud tiup, np

$$
u_{\mu} \bar{n}_{u} \overline{A_{1} B_{1}}=u_{u} p_{u} \overline{A_{2} B_{2}},
$$

 huıपuиuм upnotiqghwhtip:

 X, Y, Z upnnjtighuithpe:

 пр

$$
b=\overline{O B}=\overline{O A}=a:
$$

 4nnpqhhuunitpp, 4qptup

$$
a=\{X, Y, Z\},
$$

 h_{2} whumbumik inp tinulumb:

24. 6.2:
6.5. Planptuf: Yuufujulquid $A\left(x_{1}, y_{1}, z_{1}\right)$ is $B\left(x_{2}, y_{2}, z_{2}\right)$ दtuntaph

$$
X=x_{2}-x_{1}, Y=y_{2}-y_{1}, Z=z_{2}-z_{1}
$$

puiumahtipnu:

 phí nuqnuhuujug huppnıpjniuitip): A_{x} is B_{x} htintip $O x$ unulugph
 untnhg দ., puu 5.4. ptnptưh, $A_{x} B_{x}=x_{2}-x_{1}$: Uulquju $A_{x} B_{x}=X$ b, htunhurup,

$$
X=x_{2}-x_{1}:
$$

 jnututpp:

 unnulunus thap, np

$$
X=x, Y=y, Z=z,
$$

 qnnpnhiumuthent unyuiutif:

थ4.6.3:

Suppulquis tplynuzurntpjnitug hujunth $t, n p$ nuquilyinid qniquahtnuluhuinh wilyjniluwqd $\begin{gathered}\text { Enlqupnıpjule punu- }\end{gathered}$ qniuhi huyuruwn 5 lipu lhg
 punulqniuhitiph qnıúuphis: 2tinlumpun

$$
O A^{2}=O A_{x}^{2}+O A_{y}^{2}+O A_{z}^{2}
$$

Uulquili $|O A|=|a|, O A_{x}=X$, $O A_{y}=Y, O A_{z}=Z:$ nlunh unnulunud tilup, $n \boldsymbol{p}$

$$
|a|^{2}=X^{2}+Y^{2}+Z^{2} \text { quuu }|a|=\sqrt{X^{2}+Y^{2}+Z^{2}}:
$$

 hum 241

$$
X=|a| \cos \alpha, Y=|a| \cos \beta, Z=|a| \cos \gamma
$$

 utph प्pu:

 futpn quequlud tid

$$
\begin{gathered}
X=|a| \cos \alpha, Y=|a| \cos \beta, Z=|a| \cos \gamma \\
|a|=\sqrt{X^{2}+Y^{2}+Z^{2}}
\end{gathered}
$$

uninenıpjnitutipnu:
otinptufng htunlunus t, np

$$
\cos \alpha=\frac{x}{\sqrt{X^{2}+\gamma^{2}+Z^{2}}}, \cos \beta=\frac{Y}{\sqrt{X^{2}+\gamma^{2}+Z^{2}}}, \cos \gamma=\frac{z}{\sqrt{X^{2}+Y^{2}+Z^{2}}}
$$

$$
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1
$$

 $M_{1}\left(x_{1}, y_{1}, z_{1}\right)$ l $M_{2}\left(x_{2}, y_{2}, z_{2}\right)$ ituntp l uquhuig utigh d htnuuqninupjnilun:

$$
\overline{M_{1} M_{2}}=\left\{x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right\}
$$

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}:
$$

Ч्tpqehu hwinh

ᄂ4. 6.4:

ᄂ4. 6.5:

 tnuliqjuis (tqquequlquili) quianl:

$$
\overline{O C}=a+b=b+a
$$

ᄂ4.6.6:

乙4.6.7:

Ujuwhuny \varnothing_{2} umphen t htunlujup.
 qnjutib (4 nunıunuenpu) t :

 Ltien, np $\overline{O A}=a$: Ujonchturk quenngtip wituphuh B पtin, np $\overline{A B}=b$:

 C litu, np $\overline{B C}=c: U_{j \eta} \eta t u p n ı u$ nıLitiup, np

$$
\overline{O C}=(a+b)+c:
$$

Ujnıu lyñuhg, $\overline{A C}=b+c$ b, htinlumpup,

$$
\overline{O C}=a+(b+c):
$$

$$
a+(b+c)=(a+b)+c
$$

 huunlqnipjnila.
 qnpquiquil (urunghurnhり) t:

24.6.8:

ᄂ4.6.9:

 पtiqunnp huufur

$$
a+0=0+a=a:
$$

 ưuuf, wjuhipipu'

$$
a+(-a)=(-a)+a=0
$$

 щuщरúwititnny.

 L nunŋuud tín hulqunuly, tpot $\lambda<0$:
ι_{2} tixp jniluthng:
 julquile a, b पtiqunnitiph huufup.

1) $1 \cdot a=a$:
2) $(-1) \cdot a=-a$:
 htinlunu the 6.11 uwhufulenufhg:
3) $\lambda(\mu a)=(\lambda \mu) a$:

 $\lambda \mu<0$:
4) $\lambda(a+b)=\lambda a+\lambda b$:

 duruxiuml pugguntip uju ntruptipn:

 $\overline{O A}=a$ द $\overline{A B}=b$ b, htunkupun, $\overline{O B}=a+b$ (luqup 6.10):
 $\overline{O A^{\prime}}=\lambda a \mathrm{~L} \overline{O B^{\prime}}=\lambda(a+b)$: Unuglud $O A B$ \& $O A^{\prime} B^{\prime}$ trumluly.

 Ujuintnhg htunlunut t , np $\left|\overline{A^{\prime} B^{\prime}}\right|=|\lambda||\widehat{A B}|$: Fuigh wim $\overline{\boldsymbol{A}^{\prime} B^{\prime}} \mathbf{h}$

24. 6.10:

と夕. 6.11:

 ulumitu, np $\overline{O A}=a$ i $\overline{A B}=b$ (iulup 6.11): Shputiup nplat S

humnnud $t A^{\prime}$ qtunnud, hul $S B$ Xunuqquipe' B^{\prime} ytunnul: Utipp unnugulap luduin tnuilujniditiph htunljuw qnugqtpe.

$$
\triangle O A S \sim \Delta O^{\prime} A^{\prime} S, \quad \triangle A B S \sim \Delta A^{\prime} B^{\prime} S, \quad \triangle O B S \sim \Delta O^{\prime} B^{\prime} S:
$$

Ujuunting nulitup, np

$$
\overline{O^{\prime} A^{\prime}}=\lambda a, \overline{A^{\prime} B^{\prime}}=\lambda b, \quad \overline{O^{\prime} B^{\prime}}=\lambda(a+b):
$$

5) $(\lambda+\mu) a=\lambda a+\mu a$:

 nh

$$
\begin{aligned}
& |\lambda a+\mu a|=|\lambda a|+|\mu a|=|\lambda||a|+|\mu||a|= \\
& =(|\lambda|+|\mu|)|a|=|\lambda+\mu||a|=|(\lambda+\mu) a|:
\end{aligned}
$$

 wurugntgluy \mathbf{h},

$$
(\lambda+\mu) a+(-\mu) a=(\lambda+\mu-\mu) a=\lambda a,
$$

$$
a_{1}+\cdots+a_{n-1}+a_{n}=\left(a_{1}+\cdots+a_{n-1}\right)+a_{n}
$$

 bhitiph

$$
\begin{aligned}
\lambda\left(a_{1}+a_{2}+\cdots+a_{n}\right) & =\lambda a_{1}+\lambda a_{2}+\cdots+\lambda a_{n} \\
\left(\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}\right) a & =\lambda_{1} a+\lambda_{2} a+\cdots+\lambda_{n} a
\end{aligned}
$$

huyưuurnnıpjnifutipn:

6.12. Ahnphuf: Eplqne ytuunputph qnufuph upnjtigghwid hue-
 unulugph (pur).

2ヶ. 6.12:

 $\overline{A B}=b \mathrm{l}$, htonkupup, $\overline{O B}=a+b$ (ulqup 6.12): Fninp O, A, B

 $B^{\prime}:$ Uyף q

$$
O^{\prime} A^{\prime}=u P_{u} a \quad \& \quad A^{\prime} E^{\prime}=a \mathbb{P}_{u} b
$$

$$
u P_{u}(a+b)=u y P_{u} \overline{O B}=O^{\prime} B^{\prime}:
$$

$$
O^{\prime} B^{\prime}=O^{\prime} A^{\prime}+A^{\prime} B^{\prime}
$$

$$
u p_{u}(a+b)=u P_{u} a+u p_{u} b:
$$

Ptinptufu uuqugntgquid t:

 pulnu.

$$
u P_{u}(\lambda a)=\lambda \underline{u} P_{u} a:
$$

Uuyugnıg: Thgnip $\lambda \neq 0$ la $a \neq 0$ (h. q. ulannuufu wiluhujun t): u

 ujupluph quilitip wíuphup A и B ytuntip, np $\overline{O A}=a, \overline{O B}=\lambda a$:

ᄂ4.6.13:

乙4. 6.14:

$$
u P_{u}(\lambda a)=O B^{\prime}=\lambda \cdot O A^{\prime}=\lambda u \eta_{u} a
$$

Lu ptinptufli uuqugnıgutud k :
Fhgnıp $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ hulanhumennu t पtpquuln punu \downarrow tiqunnLutph huviulump (uqupumphp 2^{5} ppmphg unupptp), hul $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$

$$
\lambda_{1} a_{1}+\lambda_{2} a_{2}+\cdots+\lambda_{n} a_{n}
$$

Uuqugnigumd 6.12. L 6.13. ptinptufitiphg htinnenuu t
$u p_{u}\left(\lambda_{1} a_{1}+\lambda_{2} a_{2}+\cdots+\lambda_{n} a_{n}\right)=\lambda_{1} u I_{u} a_{1}+\lambda_{2} u P_{u} a_{2}+\cdots+\lambda_{n} u R_{u} a_{n}$

 turghuyht:

 ptnptufuthph, nilutiup, np

$$
\begin{gathered}
a \pm b=\left\{X_{a} \pm X_{b}, Y_{a} \pm Y_{b}, Z_{a} \pm Z_{b}\right\} \\
\lambda a=\left\{\lambda X_{a}, \lambda Y_{a}, \lambda Z_{a}\right\}
\end{gathered}
$$

quur

$$
\begin{gathered}
\left\{X_{a}, Y_{a}, Z_{a}\right\} \pm\left\{X_{b}, Y_{b}, Z_{b}\right\}=\left\{X_{a} \pm X_{b}, Y_{a} \pm Y_{b} Z_{a} \pm Z_{b}\right\} \\
\lambda\left\{X_{a}, Y_{a}, Z_{a}\right\}=\left\{\lambda X_{a}, \lambda Y_{a}, \lambda Z_{a}\right\}:
\end{gathered}
$$

 bhetint uqujuwin:

7hgnıp $a=\left\{X_{a}, Y_{a}, Z_{a}\right\}$ l $b=\left\{X_{b}, Y_{b}, Z_{b}\right\}: a \operatorname{l} b$ पtiqunplitep,

 huyumumpnupjniluitph.

$$
X_{b}=\lambda X_{a}, \quad Y_{b}=\lambda Y_{a}, \quad Z_{b}=\lambda Z_{a}
$$

 th.

$$
\frac{X_{b}}{X_{a}}=\frac{Y_{b}}{Y_{a}}=\frac{Z_{b}}{Z_{a}}
$$

 Ox, Oy, Oz unuiggpitiph प|nu;

 juiu htun;
3) i, j, k पtupnnitipp upuynp ytiqunpitap th, ujuhlupa' $|t|=|j|=|k|=1$:

 unulitiop $O y$ is $O x$ unulugpatiphis

 unuaplig humnnu $\boldsymbol{t} \boldsymbol{O X}$ unnig-
 $U_{3 n}$ huunduid htintipn huudu-
 A_{x} и A_{y} : ч्tpquuytu, A ltung unultilup $O B$ nunhis qnuquitin

 unumbnut tip, np

$$
a=\overline{O A_{x}}+\overline{O A_{y}}+\overline{O A_{z}}:
$$

 uuftile hur 2 Uh wnitinuy unnuinnu tiup, np

$$
a=\alpha \cdot i+\beta \cdot j+\gamma \cdot k:
$$

 unuguntu $t a$ प 4 qunnp:

 $\overline{O A_{x}}=\alpha \cdot \boldsymbol{i} \mathrm{i} \boldsymbol{i}$ uhwuln

 Ox unuligph पри: Ztunhwpup

$$
\alpha=\underline{P_{P x}} \mathbb{P}_{o x} a=X:
$$

 ultu
 nuen i, j, k puaqhuh, mjuhlepi hitpqujughtit

$$
a=X \cdot i+Y \cdot j+Z \cdot k
$$

 tuwnditp):

9LAhlu 7

Ept φ huinh

$$
(a, b)=|a||b| \cos \varphi
$$

punuadinul:
 $|a| \cos \varphi=u y p_{b} a$ (untu. § 6.1.), htinhumpup

$$
(a, b)=|a| u p_{a} b \quad \text { u }(a, b)=|b| u p_{b} a:
$$

 hwipunhuz
 दuil λ hpulquin plh hurup

1) $(a, b)=(b, a)$;
2) $(\lambda a, b)=\lambda(a, b)$;
3) $(a, b+c)=(a, b)+(a, c)$:

Uuyugnıgg: Luw unhufuluiwis

$$
(a, b)=|a||b| \cos \varphi \mathrm{l}(b, a)=|b||a| \cos \varphi:
$$

Ujniu lrinuhg $|a||b|=|b||a|$: Ztinlumpup $(a, b)=(b, a)$ li wnughí
 पnıpjuikn, uuqu nilitip, np

$$
(\lambda a, b)=|b| u y p_{b}(\lambda a):
$$

Eppnpn huinlqnepjuil wuyugnuge htunlunuu t

$$
(a, b+c)=|a| u y p_{a}(b+c)
$$

 (6.12. ptnptur): Ujuuytu

$$
\begin{aligned}
(a, b+c) & =|a| u \underline{p_{a}}(b+c)=(a, b+c)=|a|\left(u \mu p_{a} b+u p_{a} c\right)= \\
& =|a| u\left|p_{a} b+|a| u p_{a} c=(a, b)+(a, c):\right.
\end{aligned}
$$

 huurup untinh nuluh

$$
\begin{equation*}
\left(\sum_{l=1}^{n} \alpha_{i} a_{l}, \sum_{j=1}^{m} \beta_{j} b_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \beta_{j}\left(a_{l}, b_{j}\right) \tag{7.1}
\end{equation*}
$$

 nhis:

 npulquil (puguuumbuil) t:

Uuyugnıgg: Fulquultu, tipt φ wilynilap unıp (pnip) t, wuqu $\cos \varphi>0(\cos \varphi<0)$: Ztunhupup

$$
(a, b)=|a||b| \cos \varphi>0((a, b)=|a||b| \cos \varphi<0):
$$

 $\varphi=\frac{\pi}{2} \mathrm{l} \cos \varphi=0$: 2tunhurup $(a, b)=|a||b| \cos \varphi=0$:

$$
(a, b)=|a||b| \cos \varphi=0
$$

 hutp:

$$
a=\left\{X_{a}, Y_{a}, Z_{a}\right\}, b=\left\{X_{b}, Y_{b}, Z_{b}\right\}
$$

$$
(a, b)=X_{a} X_{b}+Y_{a} Y_{b}+Z_{a} Z_{b}
$$

puhaidinq:

$$
\begin{array}{lll}
(i, t)=1, & (l, j)=0, & (i, k)=0, \\
(j, t)=0, & (j, j)=1, & (j, k)=0, \\
(k, i)=0, & (k, j)=0, & (k, k)=1:
\end{array}
$$

$$
a=X_{a} \cdot i+Y_{a} \cdot j+Z_{a} \cdot k, \quad b=X_{b} \cdot i+Y_{b} \cdot j+Z_{b} \cdot k:
$$

 qupnnt tipg qiti, np

$$
\begin{gathered}
(a, b)=X_{a} X_{b}(i, t)+X_{a} Y_{b}(l, j)+X_{a} Z_{b}(l, k)+Y_{a} X_{b}(J, l)+Y_{a} Y_{b}(j, j)+ \\
+Y_{a} Z_{b}(j, k)+Z_{a} X_{b}(k, t)+Z_{a} Y_{b}(k, j)+Z_{a} Z_{b}(k, k)= \\
=X_{a} X_{b}+Y_{a} Y_{b}+Z_{a} Z_{b}:
\end{gathered}
$$

Ulduytur, np $(a, b)=X_{a} X_{b}+Y_{a} Y_{b}+Z_{a} Z_{b}$:

§7.2. Ч匕чSnruчǔ ursunrsule ty

2) $[a, b]$ ltiqn pulajniphid;

 $O x$ i $O y$ दूn

 gph nplit htunhg:

 huuvulumq:
U_{2} qnnpıh ${ }^{2}$

Unught htppht intiap ytumnpulquik
 huinlunipjnikultrp:
7.7. Luunqnıpmit: กquqtuqh [a,b]
 quil, withpudtizun t b puyqupun, np a is b 4tiqunphtape huti qnuhtum:

Uumgnıgg: १hgnıp $[a, b]=0: U_{\mathrm{jn}}$ ntruppnuu

$$
|[a, b]|=|a||b| \sin \varphi=0 \text { : }
$$

 $\sin \varphi=0$: 2 tinhumpun, $|[a, b]|=|a||b| \sin \varphi=0$, ujuhipid $[a, b]$ ltil-
 ytiqunpe qunjuquilut:

 Ujuentingg $\mathfrak{h}|a||b| \sin \varphi=S \mathrm{~h}$, htinhurupun,

$$
|[a, b]|=S,
$$

 quptinh 5 hitplumugitil

$$
\begin{equation*}
[a, b]=S e \tag{7.2}
\end{equation*}
$$

 щщщúukitinnu.

 ymıhи;

 humulnepmikutipe:

 jnutulipa.

1) $[a, b]=-[b, a]$;
2) $[\lambda a, b]=\lambda[a, b]$;
3) $[a, \lambda b]=\lambda[a, b]$;
4) $[a, b+c]=[a, b]+[a, c] ;$
5) $[b+c, a]=[b, a]+[c, a]$:
 $\mathbf{u}[b, a]$ पtiqunnitipe qnajulquif tid \mathfrak{l}, htunlumpun, $[a, b]=-[b, a]$

$$
[a, b]=-[b, a]:
$$

 $\lambda>0$), quiu h $\psi=\pi-\varphi(\operatorname{tap} \lambda<0)$: Eplyne qtupniu h

 atpp lynhtion tik:
fuik np $|[\lambda a, b]|=|\lambda[a, b]| \mathrm{u}[\lambda a, b], \lambda[a, b]$ ytiqunnitipn $4 n \mid h-$

 unlu untnh nulh, wnuladhle-wnmidhis qhumplitip $\lambda>0$ l $\lambda<0$ ntupptipp:

$$
[\boldsymbol{a}, \lambda \boldsymbol{b}]=-[\lambda b, a]=-\lambda[b, a]=\lambda[a, b]:
$$

 untinh nulup: Zwennnhy tilupunptin, np $a \neq 0$:

 Uupist. $\overline{O D}=\overline{O B}+\overline{O C}$ (uqup 7.2):

L4. 7.2:

$$
\overline{O B^{*}}=\left[a_{0}, \overline{O B}\right], \overline{O C^{*}}=\left[a_{0}, \overline{O C}\right], \overline{O D^{*}}=\left[a_{0}, \overline{O D}\right]=\left[a_{0}, \overline{O B}+\overline{O C}\right]:
$$

a) $\left|\overline{O B^{*}}\right|=\left|\left[a_{0}, \overline{O B}\right]\right|=\left|a_{0}\right||\overline{O B}| \sin 90^{\circ}=|\overline{O B}| ;$
b) $\overline{O B^{*}} \perp a_{0}, \overline{O B^{*}} \perp \overline{O B}:$

 $O B D C$ qniquhtnuqqd npht unnuınny: 2tinhupup $O B^{*} D^{*} C^{*}$ uquenLinp qnaquitinuqgh $t \mathrm{~L} \overline{O D^{*}}=\overline{O B^{*}}+\overline{O C^{*}}$ quud

$$
\begin{equation*}
\left[a_{0}, \overline{O D}\right]=\left[a_{0}, \overline{O B}\right]+\left[a_{0}, \overline{O C}\right] \tag{7.3}
\end{equation*}
$$

 pniu:

 पunnulumiap, np

$$
\begin{equation*}
[a, \overline{O D}]=[a, \overline{O B}]+[a, \overline{O C}]: \tag{7.4}
\end{equation*}
$$

ᄂ4.7.3:

 Elepunptilip lupuip ptpulud tile utic panhuanip 0 uqqpamitunh: b, c la $b+c$ ytiqunnitith sumpultiontphg unuitin a
 0 lting unulutip huppriponil, npis

 Ghuntpnus (Gump 7.3):

 pnıponiluhg unuwinus thap, np

$$
[a, b+c]=[a, b]+[a, c],
$$

$$
[b+c, a]=-[a, b+c]=-[a, b]-[a, c]=[b, a]+[c, a]:
$$

 $b_{1}, b_{2}, \ldots, b_{m}$ lityunnatiph L quidujulyuil $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \beta_{1}, \beta_{2}, \ldots, \beta_{m}$ hpulquis pyltap huruen untrin niluh

$$
\begin{equation*}
\left[\sum_{l=1}^{n} a_{i} a_{i}, \sum_{j=1}^{m} \beta_{j} b_{j}\right]=\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} \beta_{j}\left[a_{l}, b_{j}\right] \tag{7.5}
\end{equation*}
$$

huuquuannipjnila, nph uuqugnuge huidimpmpuniu t nuptipgnht:

 nhhuunhtpp:

$$
a=\left\{X_{a}, Y_{a}, Z_{a}\right\}, b=\left\{X_{b}, Y_{b}, Z_{b}\right\}
$$

 4nust

$$
\left.[a, b]=\left\{\begin{array}{ll}
\boldsymbol{Y}_{a} & \boldsymbol{Z}_{a} \\
\boldsymbol{Y}_{b} & \boldsymbol{Z}_{b}
\end{array}\left|,-\left|\begin{array}{ll}
X_{a} & \boldsymbol{Z}_{a} \\
X_{b} & Z_{b}
\end{array}\right|,\right| \begin{array}{ll}
\boldsymbol{X}_{a} & \boldsymbol{Y}_{a} \\
X_{b} & \boldsymbol{Y}_{b}
\end{array}\right\}\right\}
$$

purumduny:

 jnili): Ujn qniquhtnuqghtu pptikg hiplqujuginnu t uhwunp qniuny

$$
\begin{array}{lll}
{[l, l]=0,} & {[l, j]=k,} & {[l, k]=-j,} \\
{[J, l]=-k,} & {[J, f]=0,} & {[J, k]=i,} \\
{[k, l]=j,} & {[k, f]=-i,} & {[k, k]=0:}
\end{array}
$$

$$
a=X_{a} \cdot t+Y_{a} \cdot j+Z_{a} \cdot k, \quad b=X_{b} \cdot i+Y_{b} \cdot j+Z_{b} \cdot k,
$$

$$
\begin{align*}
& {[a, b]=}\left(Y_{a} Z_{b}-Y_{b} Z_{a}\right) \cdot i-\left(X_{a} Z_{b}-X_{b} Z_{a}\right) \cdot j+\left(X_{a} Y_{b}-X_{b} Y_{a}\right) \cdot k \\
& \text { 4wuu } \\
& {[a, b]=\left|\begin{array}{ll}
Y_{a} & Z_{a} \\
Y_{b} & Z_{b}
\end{array}\right| \cdot i-\left|\begin{array}{ll}
X_{a} & Z_{a} \\
X_{b} & Z_{b}
\end{array}\right| \cdot j+\left|\begin{array}{ll}
X_{a} & Y_{a} \\
X_{b} & Y_{b}
\end{array}\right| \cdot k: } \tag{7.6}
\end{align*}
$$

 qnanhiumintipit tu:

$$
[a, b]=\left|\begin{array}{ccc}
i & j & k \\
X_{a} & Y_{a} & Z_{a} \\
X_{b} & Y_{b} & Z_{b}
\end{array}\right|
$$

 шрииипјши:

 c^{\prime} 七ррпрпр:

 duru:

 pnu) 4 tig hum hpuphg unupptip tnjuly.

$$
a, b, c ; b, c, a ; c, a, b ; b, a, c ; a, c, b ; \quad c, b, a ;
$$

 dulu (4पup 7.5):

L47.4:

L4 7.5:

 uиu ($[a, b], c)=0$:

 nulitide, np $[a, b]=S e: U_{j u u n t i n g ~}^{\text {G }}$

$$
([a, b], c)=(S e, c)=S(e, c)=S|e| w p_{e} c=S w p_{e} c:
$$

 hitph unu luunnıgqued qnıquhtinuthunh pundpneponilit wji uquנuwinnt, np hhúpg hurumplnus $t a, b$
 quhtinuqh $\delta_{\text {g (}}^{\text {(kqup 7.6): }}$

Intquhtnwilunh douluale

ᄂ4. 7.6: untutiny $V=S h$ huuluuupnnipmilen unnulunux thap, np

$$
\begin{equation*}
([a, b], c)= \pm V: \tag{7.7}
\end{equation*}
$$

 $([a, b], c)=0:$

 untri nilih htunlumu huuluumpnipgnilug.

$$
([a, b], c)=(a,[b, c]):
$$

$$
(a,[b, c])=([b, c], a),
$$

$$
([a, b], c)= \pm V \quad \text { u } \quad([b, c], a)= \pm V:
$$

 uphinnydideuing: Ztunhupup

$$
([a, b], c)=([b, c], a)=(a,[b, c]):
$$

7.14. Ataphef: Gpta a, b, c पtiqunpitpp unu uid tí

$$
a=\left\{X_{a}, Y_{a}, Z_{a}\right\}, \quad b=\left\{X_{b}, Y_{b}, Z_{b}\right\}, c=\left\{X_{c}, Y_{c}, Z_{c}\right\}
$$

$$
([a, b], c)=\left|\begin{array}{lll}
X_{a} & Y_{a} & Z_{a} \\
X_{b} & Y_{b} & Z_{b} \\
X_{c} & Y_{c} & Z_{c}
\end{array}\right|
$$

pulumdinu:
Uuyugatig: Cuun 7.10. ptinptuf

$$
[a, b]=\left\{\left|\begin{array}{ll}
\boldsymbol{Y}_{a} & Z_{a} \\
Y_{b} & Z_{b}
\end{array}\right|,-\left|\begin{array}{ll}
X_{a} & Z_{a} \\
X_{b} & Z_{b}
\end{array}\right|, \left\lvert\, \begin{array}{ll}
X_{a} & \boldsymbol{Y}_{a} \\
X_{b} & Y_{b}
\end{array}\right.\right\},
$$

npp uquyup puquuxumulitinu $c=\left\{X_{c}, Y_{c}, Z_{c}\right\}$ पtiqunnp htin h oquपtany 7.5. ptonptufg uuncianus tiop, np

$$
([a, b], c)=\left|\begin{array}{ll}
\boldsymbol{Y}_{a} & Z_{a} \\
Y_{b} & Z_{b}
\end{array}\right| X_{c}-\left|\begin{array}{ll}
X_{a} & Z_{a} \\
X_{b} & Z_{b}
\end{array}\right| Y_{c}+\left|\begin{array}{ll}
X_{a} & Y_{a} \\
X_{b} & Y_{b}
\end{array}\right| Z_{c}=\left|\begin{array}{lll}
X_{a} & Y_{a} & Z_{a} \\
X_{b} & Y_{b} & Z_{b} \\
X_{c} & Y_{c} & Z_{c}
\end{array}\right|
$$

Ptinptufu uxumgniguud t :

9LのKM8

$$
\begin{align*}
& A x+B y+C=0 \tag{8.1}\\
& A x+B y+C z+D=0 \tag{8.2}
\end{align*}
$$

 qnitp lu uelutphnuplatp:

 npn2nul t huppnipjnil:

 quapq hwuчumpnuiny (huqu 8.1):

$$
\begin{equation*}
A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0 \tag{8.3}
\end{equation*}
$$

hựưuunnıpjuig, nputy $\overline{M_{0} M}=\left\{x-x_{0}, y-y_{0}, z-z_{0}\right\}$ (7.4. huun-
 unnuinnu tily

$$
\begin{equation*}
A x+B y+C z+D=0 \tag{8.2}
\end{equation*}
$$

 wnughí lyungh (8.2) huyumumpnufny:

$$
A x_{0}+B y_{0}+C z_{0}+D=0
$$

$$
\begin{equation*}
A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0 \tag{8.3}
\end{equation*}
$$

$$
A x_{0}+B y_{0}+C z_{0}+D=0
$$

 ưulutiqunn:

Oqumagn

$$
A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0
$$

 plinhwinnup huyumumpnuf:
8.3. Phaptuf: חpultuqh

$$
A_{1} x+B_{1} y+C_{1} z+D_{1}=0 \text { h } A_{2} x+B_{2} y+C_{2} z+D_{2}=0
$$

 quí phu, np

$$
A_{1}=\lambda A_{2}, B_{1}=\lambda B_{2}, C_{1}=\lambda C_{2}, D_{1}=\lambda D_{2}
$$

 mjtuyhuhb, np

$$
A_{1}=\lambda A_{2}, B_{1}=\lambda B_{2}, C_{1}=\lambda C_{2}:
$$

 quik htun: Ujף ףtrupnuu intnh nulutiu

$$
A_{1} x_{0}+B_{1} y_{0}+C_{1} z_{0}+D_{1}=0,
$$

$$
A_{2} x_{0}+B_{2} y_{0}+C_{2} z_{0}+D_{2}=0
$$

$$
D_{1}-\lambda D_{2}=0 \text { पuरu } D_{1}=\lambda D_{2}:
$$

Ztunlumpup $A_{1}=\lambda A_{2}, B_{1}=\lambda B_{2}, C_{1}=\lambda C_{2}, D_{1}=\lambda D_{2}$: Ept A_{2}, B_{2}, C_{2}, D_{2} pultphg ň utikn qpnjuqumi 2t, wuqu

$$
\frac{A_{1}}{A_{2}}=\frac{B_{1}}{B_{2}}=\frac{C_{1}}{C_{2}}=\frac{D_{1}}{D_{2}}
$$

$$
A_{1} x+B_{1} y+C_{1} z+D_{1}=0 \text { \& } A_{2} x+B_{2} y+C_{2} z+D_{2}=0
$$

 uhuh $\lambda \neq 0$ hpulquid $\rho ధ \downarrow$, np

$$
A_{1}=\lambda A_{2}, B_{1}=\lambda B_{2}, C_{1}=\lambda C_{2}, D_{1} \neq \lambda D_{2}
$$

$$
A_{1} x+B_{1} y+C_{1} z+D_{1}=0 \quad \text { и } \quad A_{2} x+B_{2} y+C_{2} z+D_{2}=0
$$

$$
A_{1} A_{2}+B_{1} B_{2}+C_{1} C_{2}=0
$$

huyuruapnupjnikn:

 wnughi qupqh

$$
\begin{equation*}
A x+B y+C=0 \tag{8.1}
\end{equation*}
$$

UuyugnıjgR quunupulnuf t 8.1. ptnituff uuqugnugh hufuinipjuufp: Supptpnepmilig quju-

 lumouyht huruwhupqniu np-
 nunhn, lipu ч पnu plunnunuu 5 quufuyulquik $M_{0}\left(x_{0}, y_{0}\right)$ htun b win ltunhg intinuqnulnu $k n_{2}$

$U_{\text {丹n }}$ ఇtrupn

$$
\begin{equation*}
A\left(x-x_{0}\right)+B\left(y-y_{0}\right)=0 \tag{8.4}
\end{equation*}
$$

 4 7.5. ptinptul): Zuviuptinnl, np $-A x_{0}-B y_{0}=C$, unuminuu tiup

$$
\begin{equation*}
A x+B y+C=0 \tag{8.1}
\end{equation*}
$$

 huyuuumpnuuny:

 Gumbnut t, np utinh nilah

$$
A x_{0}+B y_{0}+C=0
$$

 upqunilupnuu unuilenuu tixp

$$
\begin{equation*}
A\left(x-x_{0}\right)+B\left(y-y_{0}\right)=0 \tag{8.4}
\end{equation*}
$$

 $M_{0}\left(x_{0}, y_{0}\right)$ htunny wiginn nunn (nphid nuqnuhujug $t n=\{A, B\}$

 humphuminnu t nuqh :

$$
A\left(x-x_{0}\right)+B\left(y-y_{0}\right)=0
$$

hựưupniun hwinh

 hwuluuwpniu:
8.8. Staptuf: Spųuð $A_{1} x+B_{1} y+C_{1}=0$ द $A_{2} x+B_{2} y+C_{2}=0$

 np

$$
A_{1}=\lambda A_{2}, B_{1}=\lambda B_{2}, C_{1}=\lambda C_{2}
$$

$$
A_{1}=\lambda A_{2}, B_{1}=\lambda B_{2}:
$$

 ntrupnuu intinh nulutis

$$
\begin{aligned}
& A_{1} x_{0}+B_{1} y_{0}+C_{1}=0 \\
& A_{2} x_{0}+B_{2} y_{0}+C_{2}=0
\end{aligned}
$$

$$
C_{1}-\lambda C_{2}=0 \text { quuर } C_{1}=\lambda C_{2}:
$$

2 tunhupup $A_{1}=\lambda A_{2}, B_{1}=\lambda B_{2}, C_{1}=\lambda C_{2}$: Ept A_{2}, B_{2}, C_{2} pulting n_{2}

$$
\frac{A_{1}}{A_{2}}=\frac{B_{1}}{B_{2}}=\frac{C_{1}}{C_{2}}:
$$

$$
A_{1} x+B_{1} y+C_{1}=0 \text { \& } A_{2} x+B_{2} y+C_{2}=0
$$

 ppulquik phu, np

$$
A_{1}=\lambda A_{2}, B_{1}=\lambda B_{2}, C_{1} \neq \lambda C_{2}:
$$

8.10. Vuupdnıpmik: Uuqugnıgil, $n p$

$$
A_{1} x+B_{1} y+C_{1}=0 \text { घ } A_{2} x+B_{2} y+C_{2}=0
$$

 Uhuju ujli ntuypnuu, tpF untnh nelah

$$
A_{1} A_{2}+B_{1} B_{2}=0
$$

huuluumpnupjnilap:

7hgnıp unulud 5 huppnıpjuin

$$
A x+B y+C z+D=0
$$

 2unp fulinhpitipnus:

$$
\frac{A x}{-D}+\frac{B y}{-D}+\frac{C z}{-D}=1
$$

$$
\frac{x}{\frac{-D}{A}}+\frac{y}{\frac{-D}{B}}+\frac{z}{\frac{-D}{C}}=1:
$$

Yunuphtany

$$
a=-\frac{D}{A}, \quad b=-\frac{D}{B}, \quad c=-\frac{D}{C}
$$

$$
\begin{equation*}
\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 \tag{8.5}
\end{equation*}
$$

$$
\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1
$$

 humnul $t b$ l c ditdnepjnifitinny hurnupuditap:

$$
A x+B y+C=0
$$

 दunnukulap

$$
\begin{equation*}
\frac{x}{a}+\frac{y}{b}=1 \tag{8.6}
\end{equation*}
$$

 womugpatiph humnuuhg:

2UчUUUTกFULECL

 unututup π hupporiputid nuqquhujug v nınhñ, прit win huppneponilup humnnuf $t N$ 4tunnu: v nunh पpue ungutiop

 pauit htun: F ggnup e hulunhum-
 nuఇnnupmilip unıjuytu huudpulqunuu $t \overline{O N}$ पtiqunph nunqnt-
 pjuil htun: Ept π huppnipgntilu

 pjnituitiphg quufujulquiun:

$$
e=\{\cos \alpha, \cos \beta, \cos \gamma\} \text { b } \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1:
$$

 unulugph nunqnepjnialutph hivn: 2tunkupup

$$
\rho=\underline{\mu P_{e}} \overline{O M}=|e| u \mu_{e} \overline{O M}=(\overline{O M}, e)=x \cos \alpha+y \cos \beta+z \cos \gamma:
$$

$$
\begin{equation*}
x \cos \alpha+y \cos \beta+z \cos \gamma-\rho=0 \tag{8.7}
\end{equation*}
$$

'Thgnıp widd unplux tid huppanıpjuis

$$
A x+B y+C z+D=0
$$

plinhwinnıp huyuruwurnup u

$$
x \cos \alpha+y \cos \beta+z \cos \gamma-\rho=0
$$

 $\lambda \neq 0$ hpuquuk phy (pun 8.3. ptnptuf), np

$$
\cos \alpha=\lambda A, \quad \cos \beta=\lambda B, \quad \cos \gamma=\lambda C, \quad-\rho=\lambda D:
$$

Unughí tiptp unignıpjnilutinpg unnuinnud tup, np

$$
\begin{gathered}
\lambda^{2}\left(A^{2}+B^{2}+C^{2}\right)=\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1 \\
\quad \text { पuuv } \\
\lambda= \pm \frac{1}{\sqrt{\Lambda^{2}+B^{2}+C^{2}}}
\end{gathered}
$$

 ytipgluy huviumuinumbumid l_{2} minny.

$$
\frac{A}{ \pm \sqrt{A^{2}+B^{2}+C^{2}}} x+\frac{B}{ \pm \sqrt{A^{2}+B^{2}+C^{2}}} y+\frac{C}{ \pm \sqrt{A^{2}+B^{2}+C^{2}}} z+\frac{D}{ \pm \sqrt{A^{2}+B^{2}+C^{2}}}=0 \text { : }
$$

 unnu t N htinnuu: v nıñh
 ptip $\overline{O N}$ पtiqunni nunnnupjniun (tiot $O=N$, wuyu npuitu
 ptup tiplni humpuuln nunnntpjniditiph quaumulquing): Ujuuphuņ, v huminhuminud t

L4. 8.4:

7hgnıp e hulinhumenıu 5 uhuuln

$$
u P_{v} \overline{O M}=u \mathcal{P}_{e} \overline{O M} \quad \text { l } \quad u P_{v} \overline{O M}=\rho:
$$

2tunkupup

$$
\rho=u \underline{P_{e}} \overline{O M}=|e| \underline{\mu P_{e}} \overline{O M}=(\overline{O M}, e)=x \cos \alpha+y \sin \alpha
$$

पuuu

$$
\begin{equation*}
x \cos \alpha+y \sin \alpha-\rho=0 \tag{8.8}
\end{equation*}
$$

$$
\lambda= \pm \frac{1}{\sqrt{A^{2}+B^{2}}}
$$

 quik iquiluny, tipt $C<0$:

 pjnilu nuluh ujuwhuh t hpulquik phu, np

$$
\begin{gather*}
x-x_{0}=l t, y-y_{0}=m t, z-z_{0}=n t \\
\text { पuvu } \\
x=x_{0}+l t, y=y_{0}+m t, z=z_{0}+n t: \tag{8.9}
\end{gather*}
$$

 ytuqnaph nuఇnıpjuúp:

$$
\frac{x-x_{0}}{l}=\frac{y-y_{0}}{m}, \frac{y-y_{0}}{m}=\frac{z-z_{0}}{n}, \frac{x-x_{0}}{l}=\frac{z-z_{0}}{n},
$$

npning quthy

$$
\begin{equation*}
\frac{x-x_{0}}{l}=\frac{y-y_{0}}{m}=\frac{x-z_{0}}{n} \tag{8.10}
\end{equation*}
$$

untupny: Yinpehulitpu पn
 ytuqunphis:

9LIRHG 9

§ 9.1. ELRTUU

$$
\begin{equation*}
c<a \tag{9.1}
\end{equation*}
$$

wihuwपuwurnipjulap:

 पhuqu, nph पưuwjulquid qtunh ht-
 qnıuitinhg huyumun t 2a: Yuunuptunu win quannegnuup queptgh t intumbithnptid huunquth, np bhuqui ppting itplumughentu t (dųudl untuph) nunnghly purl qho, npp uhutunphit $F_{1} F_{2}$ hum-

 $F_{1}(-c, 0)$ и $F_{2}(+c, 0):$

 nututup, np

$$
F_{1} M=r_{1}=\sqrt{(x+c)^{2}+y^{2}}, \quad F_{2} M=r_{2}=\sqrt{(x-c)^{2}+y^{2}}
$$

$$
\begin{equation*}
F_{1} M+F_{2} M=r_{1}+r_{2}=2 a \tag{9.2}
\end{equation*}
$$

2tinhburup

$$
\begin{equation*}
\sqrt{(x+c)^{2}+y^{2}}+\sqrt{(x-c)^{2}+y^{2}}=2 a: \tag{9.3}
\end{equation*}
$$

$$
\begin{gathered}
\sqrt{(x+c)^{2}+y^{2}}=2 a-\sqrt{(x-c)^{2}+y^{2}} \\
\Rightarrow(x+c)^{2}+y^{2}=4 a^{2}-4 a \sqrt{(x-c)^{2}+y^{2}}+(x-c)^{2}+y^{2} \\
\Rightarrow 4 c x=4 a^{2}-4 a \sqrt{(x-c)^{2}+y^{2}} \Rightarrow a \sqrt{(x-c)^{2}+y^{2}}=a^{2}-c x:
\end{gathered}
$$

 qniutiumup, n p

$$
\begin{gathered}
a^{2} x^{2}-2 a^{2} c x+a^{2} c^{2}+a^{2} y^{2}=a^{4}-2 a^{2} c x+c^{2} x^{2} \\
\Rightarrow\left(a^{2}-c^{2}\right) x^{2}+a^{2} y^{2}=a^{2}\left(a^{2}-c^{2}\right):
\end{gathered}
$$

Ltpunidtiup unp $b=\sqrt{a^{2}-c^{2}}$ utionıpjnifin: fulup np $a>c$,

$$
\begin{equation*}
b^{2}=a^{2}-c^{2} \tag{9.4}
\end{equation*}
$$

L 4upnn tiap qnti, np

$$
\begin{gather*}
b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2} \\
\text { पuरu } \\
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1: \tag{9.5}
\end{gather*}
$$

$$
y^{2}=b^{2}\left(1-\frac{x^{2}}{a^{2}}\right):
$$

 quinusu típ, np

$$
\begin{aligned}
F_{1} M & =r_{1}=\sqrt{(x+c)^{2}+y^{2}}=\sqrt{x^{2}+2 c x+y^{2}+b^{2}-\frac{b^{2}}{a^{2}} x^{2}}= \\
& =\sqrt{\frac{c^{2}}{a^{2}} x^{2}+2 c x+a^{2}}=\sqrt{\left(\frac{c}{a} x+a\right)^{2}}=\left|a+\frac{c}{a} x\right|:
\end{aligned}
$$

$$
\begin{equation*}
F_{1} M=r_{1}=a+\frac{c}{a} x: \tag{9.6}
\end{equation*}
$$

$$
\begin{equation*}
F_{2} M=r_{2}=a-\frac{c}{a} x \tag{9.7}
\end{equation*}
$$

 tplpnnq पupaqh qnp:

 4tuntinh qnapnhiumunitipn umhUukurhulyumo til $|x| \leq a \quad l$ $|\boldsymbol{y}| \leq \boldsymbol{b} \quad$ withuquumpnıpınıiaGhpny: Fwe dquiumunut t, np

 ququpnud uquenltpuud nuqnwilujuid unhúulititnhg:

Zwqnpnhy Gquentinp, np

ᄂ4. 9.2:

 qdumun

$$
y=\frac{b}{a} \sqrt{a^{2}-x^{2}}
$$

24. 9.3:

と4.9.4:

Ehuquh uputinphuyh wnuigpitipn ($O x$ a $O y$ unuingpitipp)

 huyumun $t b$:

$$
x^{2}+y^{2}=a^{2}
$$

$$
\varepsilon=\frac{c}{a}
$$

hwpuptpnıpjnilup:

Ujnıu पñクuhg $c^{2}=a^{2}-b^{2}$: תluunh

$$
\varepsilon^{2}=\frac{c^{2}}{a^{2}}=\frac{a^{2}-b^{2}}{a^{2}}=1-\frac{b^{2}}{a^{2}},
$$

npunting hi.

$$
\varepsilon=\sqrt{1-\frac{b^{2}}{a^{2}}} \quad \text { b } \quad \frac{b}{a}=\sqrt{1-\varepsilon^{2}}:
$$

$$
F_{1} M=r_{1}=a+\varepsilon x, F_{2} M=r_{2}=a-\varepsilon x
$$

puinudutpp:

§9.2. LrTVERAL

$$
0<a<c
$$

whhuyquaupnipgnitutiphi:
9.3. Uwhhuwlmıf: Zhultppni 5 qn¿unuu huppmipjuil htuntphg
 htnuunnmipgnitutiph nupptpnıpjuil pugupduly undtyp F_{1} h F_{2} \$nlnuultiphg huyuuup t 2a:

 puqunupjnit:

 u $F_{\mathbf{2}}(+c, 0)$:

7hgnıp $\boldsymbol{M}(x, y)$ दting hulanhuminnuf t hhuy

 nitutup, np

$$
F_{1} M=r_{1}=\sqrt{(x+c)^{2}+y^{2}}, \quad F_{2} M=r_{2}=\sqrt{(x-c)^{2}+y^{2}},
$$

h, nuen hpultippnif uwhưuluuwis

$$
\left|F_{1} M-F_{2} M\right|=\left|r_{1}-r_{2}\right|=2 a
$$

पuuu

$$
\begin{equation*}
F_{1} M-F_{2} M=r_{1}-r_{2}= \pm 2 a: \tag{9.8}
\end{equation*}
$$

2tinlumpup

$$
\begin{equation*}
\sqrt{(x+c)^{2}+y^{2}}-\sqrt{(x-c)^{2}+y^{2}}= \pm 2 a: \tag{9.9}
\end{equation*}
$$

 दnn

$$
\begin{gathered}
\sqrt{(x+c)^{2}+y^{2}}=\sqrt{(x-c)^{2}+y^{2}} \pm 2 a \\
\Rightarrow(x+c)^{2}+y^{2}=(x-c)^{2}+y^{2} \pm 4 a \sqrt{(x-c)^{2}+y^{2}}+4 a^{2} \\
\Rightarrow 4 c x=4 a^{2} \pm 4 a \sqrt{(x-c)^{2}+y^{2}} \Rightarrow c x-a^{2}= \pm a \sqrt{(x-c)^{2}+y^{2}}
\end{gathered}
$$

 qnilutiming, np

$$
\begin{gathered}
c^{2} x^{2}-2 a^{2} c x+a^{4}=a^{2} x^{2}-2 a^{2} c x+a^{2} c^{2}+a^{2} y^{2} \\
\Rightarrow\left(c^{2}-a^{2}\right) x^{2}-a^{2} y^{2}=a^{2}\left(c^{2}-a^{2}\right)
\end{gathered}
$$

$$
\begin{equation*}
b^{2}=c^{2}-a^{2} \tag{9.10}
\end{equation*}
$$

la quinn tiap quti, np

$$
\begin{gather*}
b^{2} x^{2}-a^{2} y^{2}=a^{2} b^{2} \\
\text { पuuu } \\
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1: \tag{9.11}
\end{gather*}
$$

 huuyuuupufulup: Ujn q̧uypnuu

$$
y^{2}=b^{2}\left(\frac{x^{2}}{a^{2}}-1\right):
$$

 quinntu tilup, np

$$
\begin{aligned}
F_{1} M= & r_{1}=\sqrt{(x+c)^{2}+y^{2}}=\sqrt{x^{2}+2 c x+y^{2}+\frac{b^{2}}{a^{2}} x^{2}-b^{2}}= \\
& =\sqrt{\frac{c^{2}}{a^{2}} x^{2}+2 c x+a^{2}}=\sqrt{\left(\frac{c}{a} x+a\right)^{2}}=\left|\frac{c}{a} x+a\right|:
\end{aligned}
$$

$$
F_{2} M=r_{2}=\left|\frac{c}{a} x-a\right|:
$$

 huưup

$$
F_{1} M=\frac{c}{a} x+a, \quad F_{2} M=\frac{c}{a} x-a
$$

2tinhumpup

$$
F_{1} M-F_{2} M=2 a:
$$

Ful $x \leq-a$ huudup

$$
F_{1} M=-\frac{c}{a} x-a, \quad F_{2} M=-\frac{c}{a} x+a
$$

2tunkupup

$$
F_{1} M-F_{2} M=-2 a:
$$

 un

 ququenduuf: Uqף hul wum

 uputtunpuujh: Unughí punnpnh huviup nitutup, np

$$
y=\frac{b}{a} \sqrt{x^{2}-a^{2}}, x \geq a:
$$

 $2^{\text {mind }}$ higpuil haupuuqn t unintionul t

$$
Y=\frac{b}{a} x
$$

nษఇŋhis:

L4.9.5:

ᄂ4. 9.6:

$$
M N=Y-y=\frac{b}{a}\left(x-\sqrt{x^{2}-a^{2}}\right)=\frac{a b}{x+\sqrt{x^{2}-a^{2}}} \Rightarrow \lim _{x \rightarrow+\infty} M N=0:
$$

Rưup nf, $M P<M N$, uичu $\lim _{x \rightarrow+\infty} M P=0$:

 unnu.

$$
y=\frac{b}{a} x, \quad y=-\frac{b}{a} x:
$$

Tpunuplitip turu

$$
-\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

 (9.11) hhưt

$$
\varepsilon=\frac{c}{a}=\sqrt{1+\left(\frac{b}{a}\right)^{2}}
$$

hupurfipncpjnilup:

 unulagph tiplumjupny:
 umjhí r_{1} is r_{2} qunuy

$$
r_{1}=\varepsilon x+a, \quad r_{2}=\varepsilon x-a
$$

$$
r_{1}=-(\varepsilon x+a), \quad r_{2}=-(\varepsilon x-a)
$$

puikudhtpin dupu djninh hurump $(x \leq a)$:

 Yurqquid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

 $\varepsilon=\frac{c}{a}<1$:

 K\& $\frac{a}{\varepsilon}$ htnuupnpnıpjuid
 utiph huyquaupnuflitipi nulatio htunlumu untupn.

$$
x=-\frac{a}{z} \quad \text { l } \quad x=+\frac{a}{z}:
$$

 pnpip uq:

 (aqup 9.7):

24. 9.7:

乙4. 9.8:

UJdf nhumplutip

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

 $b^{2}=c^{2}-a^{2}$ b $\varepsilon=\frac{c}{a}>1$:

 nhptiquaphutap:
 phuitiph huyumumnufitipit nutith htunljuil uitupe.

$$
x=-\frac{a}{e} \quad \text { l } \quad x=+\frac{a}{\varepsilon}:
$$

七рирпрпр we:

 Ltionpnep is dupu ququiph úpqh (uquan 9.8):

$$
\frac{r}{d}=\varepsilon
$$

$$
d=\frac{a}{\varepsilon}-x
$$

 unulnuf

$$
r=a-\varepsilon x
$$

fuinudinny (untu. § 9.1.): Ltinhupup

$$
\frac{r}{d}=\frac{a-\varepsilon x}{\frac{a}{\varepsilon}-x}=\frac{(a-\varepsilon x) \varepsilon}{(a-\varepsilon x)}=\varepsilon:
$$

$$
d=\frac{a}{\varepsilon}+x, \quad r=a+\varepsilon x
$$

h, htunhmpup,

$$
\frac{r}{d}=\frac{a+\varepsilon x}{\frac{a}{\varepsilon}+x}=\frac{(a+\varepsilon x) \varepsilon}{(a+\varepsilon x)}=\varepsilon:
$$

$$
d=x-\frac{a}{\varepsilon}
$$

 upunuut

$$
r=\varepsilon x-a
$$

Fulumdinul (untu. § 9.2.): Ltunhupup

$$
\frac{r}{d}=\frac{\varepsilon x-a}{x-\frac{a}{\varepsilon}}=\frac{(\varepsilon x-a) \varepsilon}{(\varepsilon x-a)}=\varepsilon
$$

 ntuppnid M पtinh htnuupnpnıpjnilis wig nhptiquphuig upunuhujuпи!nus

$$
d=|x|+\frac{a}{\varepsilon}
$$

 $|x|=-x \mathrm{l}$

$$
d=-x+\frac{a}{\varepsilon}
$$

$$
r=-(\varepsilon x-a)
$$

puikudliny (intu. § 9.2.): Ztinhluwfup

$$
\frac{r}{d}=\frac{-(\varepsilon x-a)}{-x+\frac{a}{\varepsilon}}=\frac{(-\varepsilon x+a) \varepsilon}{(-\varepsilon x+a)}=\varepsilon
$$

Ptinptufu wuygntgux 5 :

 utphis:

hupuptipnipjnilin unulud nungh (nhptiqunpuigg) htnuunnpnipjuis

§9.4. गURUFOL

 ulugunıu win htunnu:
9.9. Uuh

 unl $\varepsilon=1$ qtuppnus, ujuhiph

$$
\begin{equation*}
r=d \tag{9.12}
\end{equation*}
$$

 (ulqui 9.9):
F Ltiung v nhptiqunphuhis unutitín
 unnuf $k K$ Ltunnuf: npuytu $O x$ unuligp lhagitilup win nunuuhujugn, nph приquil nuqnuppnien huudndicinut it $\overline{K F}$ humuludh nuqఇnupjuli htin, hul qnnpnhlumunitnp uhqpiumlitup hurumptip

乙4.9.9:

 qnititiou htinhjuil intupg.

$$
x=-\frac{p}{2}
$$

 htuntpnuf: Milutiup, np

$$
r=\sqrt{\left(x-\frac{p}{2}\right)^{2}+y^{2}}, \quad d=N M=N L+L M=\frac{p}{2}+x:
$$

 unuinnud tip.

$$
\begin{equation*}
\sqrt{\left(x-\frac{p}{2}\right)^{2}+y^{2}}=\frac{p}{2}+x \tag{9.13}
\end{equation*}
$$

$$
\left(x-\frac{p}{2}\right)^{2}+y^{2}=\left(x+\frac{p}{2}\right)^{2}:
$$

$$
\begin{equation*}
y^{2}=2 p x \tag{9.14}
\end{equation*}
$$

 чим

 172

Thunuplytup htunlugul

$$
\begin{equation*}
A x^{2}+2 B x y+C y^{2}+2 D x+2 E y+F=0, \tag{9.15}
\end{equation*}
$$

 nt

 quanqu qnitap:

 uthe ylangutiup $A=1 / a^{2}, B=0, C=1 / b^{2}, D=E=0, F=-1$, uич

$$
\left\{\begin{array}{l}
x=x_{1} \cos \alpha-y_{1} \sin \alpha \tag{9.16}\\
y=x_{1} \sin \alpha+y_{1} \cos \alpha
\end{array}\right.
$$

 (9.15) huy puoptin' unuminnu tup

$$
\begin{equation*}
A_{1} x_{1}^{2}+2 B_{1} x_{1} y_{1}+C_{1} y_{1}^{2}+2 D_{1} x_{1}+2 E_{1} y_{1}+F=0 \tag{9.17}
\end{equation*}
$$

 uthe untnh nulutium $B_{1}=0$ huyưumpnepjnilap:

Fuluurutu, puif np

$$
\begin{gathered}
A_{1}=A \cos ^{2} \alpha+2 B \sin \alpha \cos \alpha-C \sin ^{2} \alpha \\
B_{1}=(C-A) \sin \alpha \cos \alpha+B\left(\cos ^{2} \alpha-\sin ^{2} \alpha\right) \\
C_{1}=A \sin ^{2} \alpha-22 B \sin \alpha \cos \alpha+C \cos ^{2} \alpha
\end{gathered}
$$

$$
\begin{gather*}
\frac{1}{2}(C-A) \sin 2 \alpha+B \cos 2 \alpha=0 \\
4 u u \\
\cot 2 \alpha=\frac{(A-C)}{2 B} \tag{9.18}
\end{gather*}
$$

 hwu

2tinhupup nhumplqtíp

$$
\begin{equation*}
A_{1} x_{1}^{2}+C_{1} y_{1}^{2}+2 D_{1} x_{1}+2 E_{1} y_{1}+F=0 \tag{9.19}
\end{equation*}
$$

huuluumpnıup:

$$
\begin{align*}
& A_{1}\left(x_{1}^{2}+2 \frac{D_{1}}{A_{1}} x_{1}\right)+C_{1}\left(y_{1}^{2}+2 \frac{E_{1}}{C_{1}} y_{1}\right)+F=0 \Leftrightarrow \\
& A_{1}\left(x_{1}+\frac{D_{1}}{A_{1}}\right)^{2}+C_{1}\left(y_{1}+\frac{E_{1}}{C_{1}}\right)^{2}+F-\frac{D_{1}^{2}}{A_{1}}-\frac{E_{1}^{2}}{C_{1}}=0: \tag{9.20}
\end{align*}
$$

 unulugpitiph qnaquiten intinuzupd huruiduju

$$
X=x_{1}+\frac{D_{1}}{A_{1}} \text { h } Y=y_{1}+\frac{E_{1}}{C_{1}}
$$

 4punntup

$$
\begin{equation*}
A_{1} X^{2}+C_{1} Y^{2}=F_{1} \tag{9.21}
\end{equation*}
$$

untupg:
Thgnip $A_{1}>0, C_{1}>0, F_{1}>0$: Uin ntrupnud, quunuphinn

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=-1
$$

 thap

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

2tunlyun

$$
\begin{aligned}
& A_{1}<0, C_{1}<0, \pm F_{1}>0 ; \\
& A_{1}<0, C_{1}>0, \pm F_{1}>0 ; \\
& A_{1}<0, C_{1}<0, \quad F_{1}<0
\end{aligned}
$$

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=0
$$

utruph: Чtnehku nnn2nuut

$$
\frac{x}{a}-\frac{y}{b}=0, \quad \frac{x}{a}+\frac{y}{b}=0
$$

 чппp

Fuly tipt (9.21) huquuampurit ithe $\boldsymbol{A}_{1}>0, C_{1}>0, F_{1}=0$, uи्ұu uju plunniluntut

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=0
$$

 दnnpnhiuunditp: $A_{1}<0, C_{1}<0, F_{1}=0$ qtuppnux unuinnud tiap Luntju unqunlupz:
 $C_{1}=0, E_{1} \neq 0$: Ujn huqưumpnifp ithpurugghtip

$$
A_{1}\left(x_{1}^{2}+2 \frac{D_{1}}{A_{1}} x_{1}\right)+2 E_{1}\left(y_{1}+\frac{F}{2 E_{1}}\right)=0
$$

untupnul, puly wifunhtunk

$$
A_{1}\left(x_{1}+\frac{D_{1}}{A_{1}}\right)^{2}+2 E_{1}\left(y_{1}+\frac{F}{2 E_{1}}-\frac{D_{1}^{2}}{2 A_{1} E_{1}}\right)=0
$$

 ๆu_und huufuduju

$$
X=x_{1}+\frac{D_{1}}{A_{1}}, \quad Y=y_{1}+\frac{F}{2 E_{1}}-\frac{D_{1}^{2}}{2 A_{1} E_{1}}
$$

puinualithp: Upqjnilupnıu quinulumip

$$
\begin{equation*}
A_{1} X^{2}+2 E_{1} Y=0 \tag{9.22}
\end{equation*}
$$

 $X^{2}=-2 p Y$ intupp, npp innuutu npn2nud t upupupn!:

$$
A_{1}\left(x_{1}+\frac{D_{1}}{A_{1}}\right)^{2}+F-\frac{D_{1}^{2}}{A_{1}}=0
$$

 ntทีu_und nuun

$$
X=x_{1}+\frac{D_{1}}{A_{1}}, \quad Y=y_{1}
$$

$$
\begin{equation*}
X^{2}+F_{1}=0 \tag{9.23}
\end{equation*}
$$

untuph, npunten $F_{1}=F / A_{1}-D_{1}^{2} / A_{1}^{2}$:

$$
x^{2}-a^{2}=0
$$

 Oy unuligpt:

 tilipunptilip, np (9.17) huyumuputuid utig $A_{1}=B_{1}=C_{1}=0$, mjuhupi

$$
\left\{\begin{array}{c}
A \cos ^{2} \alpha+B \sin 2 \alpha+C \sin ^{2} \alpha=0 \tag{9.24}\\
-\frac{1}{2} A \sin 2 \alpha+B \cos 2 \alpha+\frac{1}{2} C \sin 2 \alpha=0 \\
A \sin ^{2} \alpha-B \sin 2 \alpha+C \cos ^{2} \alpha=0
\end{array}\right.
$$

Uunuglud wpquilupitipn dhulytuytiup ptantuch untupnù:

$$
\begin{array}{r}
A x^{2}+B y^{2}+C z^{2}+2 D x y+2 E x z+ \\
+2 F y z+2 G x+2 H y+2 K z+L=0 \tag{9.25}
\end{array}
$$

 huufulupap:

9.13. Phnptuf: Thgnup Φ hwinhuminnu 5 tipqnipn qupqh uw-

1) $\Phi_{1} \subset \Pi$;
2) Φ_{1} huinh huminnu t tnlpnpi qupqh $4 n p$;

3) $\Phi_{1}=\emptyset$:

 Π huppnıpjui htun: unp qnnpпphuunujhis huuduquaqniu I huppnepjnitip upunudt

$$
\begin{equation*}
z_{1}=0 \tag{9.26}
\end{equation*}
$$

$$
\begin{gather*}
A_{1} x_{1}^{2}+B_{1} y_{1}^{2}+C_{1} z_{1}^{2}+2 D_{1} x_{1} y_{1}+2 E_{1} x_{1} z_{1}+2 F_{1} y_{1} z_{1}+ \\
+2 G_{1} x_{1}+2 H_{1} y_{1}+2 K_{1} z_{1}+L_{1}=0 \tag{9.27}
\end{gather*}
$$

huyumumpnup: Fuly npuituqh unumulup $\Phi_{1}=\Phi \cap \Pi$ uquinlinh huyumupniup $O_{1} x_{1} y_{1}$ दnnpphiuwnitnp huvulqupqniu, (9.26) huyumumpneup intinumptiup (9.27) huyumuputuin utg.

$$
\begin{equation*}
A_{1} x_{1}^{2}+B_{1} y_{1}^{2}+2 D_{1} x_{1} y_{1}+2 G_{1} x_{1}+2 H_{1} y_{1}+L_{1}=0 \tag{9.28}
\end{equation*}
$$

Ept $A_{1}=B_{1}=D_{1}=G_{1}=H_{1}=L_{1}=0$, uици $\Phi_{1}=\Pi$: Epti $A_{1}=$ $B_{1}=D_{1}=G_{1}=H_{1}=0$ l $L_{1} \neq 0$, wu्या (9.28) hưपuumpnufi npn-

 qh $\mathrm{qnp}:$

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

 unpunuut

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0
$$

 upu!nus

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1
$$

 unpunut

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=-1
$$

 quıu unpùnult

$$
\frac{x^{2}}{p}+\frac{y^{2}}{q}=2 z
$$

 qnuu unpulnua t

$$
\frac{x^{2}}{p}-\frac{y^{2}}{q}=2 z
$$

 nunhnutpn 4nと

$$
A x^{2}+2 B x y+C y^{2}+2 D x+2 E y+F=0
$$

$$
\begin{equation*}
G(x, y)=0: \tag{9.29}
\end{equation*}
$$

Ujdi wuymgngtiap, np (9.29) untuph huruuumpnuin $O x y z$ nunqui-

 $G(x, y)=0$ untuph nplat hưưumpnufny: Thgnıp $M_{0}\left(x_{0}, y_{0}, z_{0}\right)$

 x_{0}, y_{0}, z pltipn, npunt $z \quad$ quufujulquis phyt, puinh np $G(x, y)$

 4tplunup:

 unu!nut t

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

huyuxumpnuunu:

 unpunut

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

huuluuurnnunyl:
9. 23. Uwhefuinnid: TMupupn
 unpunut

$$
x^{2}=2 p y
$$

huyฯuนumpnıưnu:

1. Курош А. Г., Курс высшей алгебры, 11-ое изд., стер., М., Наука, 1975, 432 c.
2. Виноградов И. М., Основы теории чнсел, Москва-Ижевск: НИЦ «Регулярная и хаотическая динамика», 2003, 176 с.
3. Кудреватов Г. А., Сборник зядяч по теории чнсел, М., «Просвещение*, 1970, 128 с.
4. Прасолов В. В., Многочлены, 3-е изд, испр., М., МЦНМО, 2003, 336 с: ил. .
5. Лидл Р., Нидеррайтер Г., Конечные поля, В $2-\mathrm{x}$ томах, Том 1 , Пер. с англ., М., Мир, 1988, 430 с.
6. Гантмахер Ф. Р., Теория матриц, М., Наука, 1967, 576 с.
7. Александров П. С., Курс аналитической геометрии и линейной алгебры, М., Наука, 1979, 512 с.
8. Ефимов Н. В., Краткй̈ курс авалитнческой геометрин, Учебв. пособие. 13-ое стереот. изд., М., ФИЗМАТЛИТ, 2006, 240 с.
9. Милованов М. В., Тышкевич Р. И., Феденко А. С., Алгебра и аналитическая геометрия - Часть 1, Мн., Амалфея, 2001, 400 с.
10. Цубербиллер О. Н., Задачи и упражнения по аналитическож геометрин, 31-е изд., стер. - СПб.: Издательство «Лань», 2003, 336 с, ил.

しUぃUFUと 3
 4
UロUQFU FUみFし
¿Uし「ULUCトЧ् 5
 5
 5
 8
 11
 13
 18
 23
 24
 28
 33
 38
 38
 45
3．3．ULчヒケUObLF FUQUULてUUZE 51
3．4．FUQUUL？UULER URUUSLER 54
9nifu 4．UUSrr3ubr tu nrnerputr 57
 57
 67
 74
 81
 2UчU7U「2 UUS「ト3 88
4．6．UUS「FSLE「ト กUL9 92
 ヒГчГU२UФПトß8Пトし 97
 97
 97
 100
 103
5．4．ЛトఇてUしчBПトし ๆ6чU 107
 111
 111
 115
 118
 120
 125
 128

 130
 130
 133
 141
 145
 145
 151
 153
 156
 157
9.1. ELFTUU 157
9.2. 2 HTL EFRL 162
 167
9.4. TURUFRL 171
 173
 178
QruYuしnkesnku 182

Sumpuaily 150: mumythn 151:

[^0]: くS凡 512：514（07）
 QUY $\quad 22.14+22.151 \mathrm{~g} 7$
 ISBN 978－5－8084－1490－7

